IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42094-9.html
   My bibliography  Save this article

HMGA2 directly mediates chromatin condensation in association with neuronal fate regulation

Author

Listed:
  • Naohiro Kuwayama

    (The University of Tokyo
    University of California)

  • Tomoya Kujirai

    (The University of Tokyo)

  • Yusuke Kishi

    (The University of Tokyo)

  • Rina Hirano

    (The University of Tokyo)

  • Kenta Echigoya

    (The University of Tokyo)

  • Lingyan Fang

    (The University of Tokyo)

  • Sugiko Watanabe

    (Kumamoto University)

  • Mitsuyoshi Nakao

    (Kumamoto University)

  • Yutaka Suzuki

    (The University of Tokyo)

  • Kei-ichiro Ishiguro

    (Kumamoto University)

  • Hitoshi Kurumizaka

    (The University of Tokyo)

  • Yukiko Gotoh

    (The University of Tokyo
    The University of Tokyo)

Abstract

Identification of factors that regulate chromatin condensation is important for understanding of gene regulation. High-mobility group AT-hook (HMGA) proteins 1 and 2 are abundant nonhistone chromatin proteins that play a role in many biological processes including tissue stem-progenitor cell regulation, but the nature of their protein function remains unclear. Here we show that HMGA2 mediates direct condensation of polynucleosomes and forms droplets with nucleosomes. Consistently, most endogenous HMGA2 localized to transposase 5– and DNase I–inaccessible chromatin regions, and its binding was mostly associated with gene repression, in mouse embryonic neocortical cells. The AT-hook 1 domain was necessary for chromatin condensation by HMGA2 in vitro and in cellulo, and an HMGA2 mutant lacking this domain was defective in the ability to maintain neuronal progenitors in vivo. Intrinsically disordered regions of other proteins could substitute for the AT-hook 1 domain in promoting this biological function of HMGA2. Taken together, HMGA2 may regulate neural cell fate by its chromatin condensation activity.

Suggested Citation

  • Naohiro Kuwayama & Tomoya Kujirai & Yusuke Kishi & Rina Hirano & Kenta Echigoya & Lingyan Fang & Sugiko Watanabe & Mitsuyoshi Nakao & Yutaka Suzuki & Kei-ichiro Ishiguro & Hitoshi Kurumizaka & Yukiko , 2023. "HMGA2 directly mediates chromatin condensation in association with neuronal fate regulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42094-9
    DOI: 10.1038/s41467-023-42094-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42094-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42094-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles H. Li & Eliot L. Coffey & Alessandra Dall’Agnese & Nancy M. Hannett & Xin Tang & Jonathan E. Henninger & Jesse M. Platt & Ozgur Oksuz & Alicia V. Zamudio & Lena K. Afeyan & Jurian Schuijers & , 2020. "MeCP2 links heterochromatin condensates and neurodevelopmental disease," Nature, Nature, vol. 586(7829), pages 440-444, October.
    2. William C. Skarnes & Barry Rosen & Anthony P. West & Manousos Koutsourakis & Wendy Bushell & Vivek Iyer & Alejandro O. Mujica & Mark Thomas & Jennifer Harrow & Tony Cox & David Jackson & Jessica Sever, 2011. "A conditional knockout resource for the genome-wide study of mouse gene function," Nature, Nature, vol. 474(7351), pages 337-342, June.
    3. S. Sanulli & M. J. Trnka & V. Dharmarajan & R. W. Tibble & B. D. Pascal & A. L. Burlingame & P. R. Griffin & J. D. Gross & G. J. Narlikar, 2019. "HP1 reshapes nucleosome core to promote phase separation of heterochromatin," Nature, Nature, vol. 575(7782), pages 390-394, November.
    4. Andrew J. Bannister & Philip Zegerman & Janet F. Partridge & Eric A. Miska & Jean O. Thomas & Robin C. Allshire & Tony Kouzarides, 2001. "Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain," Nature, Nature, vol. 410(6824), pages 120-124, March.
    5. Yujin Harada & Mayumi Yamada & Itaru Imayoshi & Ryoichiro Kageyama & Yutaka Suzuki & Takaaki Kuniya & Shohei Furutachi & Daichi Kawaguchi & Yukiko Gotoh, 2021. "Cell cycle arrest determines adult neural stem cell ontogeny by an embryonic Notch-nonoscillatory Hey1 module," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    6. Stephanie Dobersch & Karla Rubio & Indrabahadur Singh & Stefan Günther & Johannes Graumann & Julio Cordero & Rafael Castillo-Negrete & Minh Bao Huynh & Aditi Mehta & Peter Braubach & Hector Cabrera-Fu, 2021. "Positioning of nucleosomes containing γ-H2AX precedes active DNA demethylation and transcription initiation," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    7. Amy R. Strom & Alexander V. Emelyanov & Mustafa Mir & Dmitry V. Fyodorov & Xavier Darzacq & Gary H. Karpen, 2017. "Phase separation drives heterochromatin domain formation," Nature, Nature, vol. 547(7662), pages 241-245, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Peng & Yingping Hou & Haowei Meng & Yong Cao & Xiaotian Wang & Lumeng Jia & Qing Chen & Yang Zheng & Yujie Sun & Hebing Chen & Tingting Li & Cheng Li, 2023. "Mapping nucleolus-associated chromatin interactions using nucleolus Hi-C reveals pattern of heterochromatin interactions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Lidice González & Daniel Kolbin & Christian Trahan & Célia Jeronimo & François Robert & Marlene Oeffinger & Kerry Bloom & Stephen W. Michnick, 2023. "Adaptive partitioning of a gene locus to the nuclear envelope in Saccharomyces cerevisiae is driven by polymer-polymer phase separation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Hua Yu & Zhen Sun & Tianyu Tan & Hongru Pan & Jing Zhao & Ling Zhang & Jiayu Chen & Anhua Lei & Yuqing Zhu & Lang Chen & Yuyan Xu & Yaxin Liu & Ming Chen & Jinghao Sheng & Zhengping Xu & Pengxu Qian &, 2021. "rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    4. Clara Lopes Novo & Emily V. Wong & Colin Hockings & Chetan Poudel & Eleanor Sheekey & Meike Wiese & Hanneke Okkenhaug & Simon J. Boulton & Srinjan Basu & Simon Walker & Gabriele S. Kaminski Schierle &, 2022. "Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Xiaowen Lyu & M. Jordan Rowley & Michael J. Kulik & Stephen Dalton & Victor G. Corces, 2023. "Regulation of CTCF loop formation during pancreatic cell differentiation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Jorine M. Eeftens & Manya Kapoor & Davide Michieletto & Clifford P. Brangwynne, 2021. "Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Catherine Naughton & Covadonga Huidobro & Claudia R. Catacchio & Adam Buckle & Graeme R. Grimes & Ryu-Suke Nozawa & Stefania Purgato & Mariano Rocchi & Nick Gilbert, 2022. "Human centromere repositioning activates transcription and opens chromatin fibre structure," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Yohan Lee & Sujin Park & Feng Yuan & Carl C. Hayden & Liping Wang & Eileen M. Lafer & Siyoung Q. Choi & Jeanne C. Stachowiak, 2023. "Transmembrane coupling of liquid-like protein condensates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Jorge Mata-Garrido & Yao Xiang & Yunhua Chang-Marchand & Caroline Reisacher & Elisabeth Ageron & Ida Chiara Guerrera & Iñigo Casafont & Aurelia Bruneau & Claire Cherbuy & Xavier Treton & Anne Dumay & , 2022. "The Heterochromatin protein 1 is a regulator in RNA splicing precision deficient in ulcerative colitis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Lennart Enders & Marton Siklos & Jan Borggräfe & Stefan Gaussmann & Anna Koren & Monika Malik & Tatjana Tomek & Michael Schuster & Jiří Reiniš & Elisa Hahn & Andrea Rukavina & Andreas Reicher & Tamara, 2023. "Pharmacological perturbation of the phase-separating protein SMNDC1," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Estelle Vincendeau & Wenming Wei & Xuefei Zhang & Cyril Planchais & Wei Yu & Hélène Lenden-Hasse & Thomas Cokelaer & Juliana Pipoli da Fonseca & Hugo Mouquet & David J. Adams & Frederick W. Alt & Step, 2022. "SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Jana Hädicke & Mario Engelmann, 2013. "Social Investigation and Long-Term Recognition Memory Performance in 129S1/SvImJ and C57BL/6JOlaHsd Mice and Their Hybrids," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-8, January.
    13. Chrysafis Vogiatzis & Mustafa Can Camur, 2019. "Identification of Essential Proteins Using Induced Stars in Protein–Protein Interaction Networks," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 703-718, October.
    14. Joo-Hui Han & Rajendra Karki & R. K. Subbarao Malireddi & Raghvendra Mall & Roman Sarkar & Bhesh Raj Sharma & Jonathon Klein & Harmut Berns & Harshan Pisharath & Shondra M. Pruett-Miller & Sung-Jin Ba, 2024. "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Ziad Ibrahim & Tao Wang & Olivier Destaing & Nicola Salvi & Naghmeh Hoghoughi & Clovis Chabert & Alexandra Rusu & Jinjun Gao & Leonardo Feletto & Nicolas Reynoird & Thomas Schalch & Yingming Zhao & Ma, 2022. "Structural insights into p300 regulation and acetylation-dependent genome organisation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    16. Tengfei Wang & Shuxiang Shi & Yuanyuan Shi & Peipei Jiang & Ganlu Hu & Qinying Ye & Zhan Shi & Kexin Yu & Chenguang Wang & Guoping Fan & Suwen Zhao & Hanhui Ma & Alex C. Y. Chang & Zhi Li & Qian Bian , 2023. "Chemical-induced phase transition and global conformational reorganization of chromatin," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Khalil Joron & Juliane Oliveira Viegas & Liam Haas-Neill & Sariel Bier & Paz Drori & Shani Dvir & Patrick Siang Lin Lim & Sarah Rauscher & Eran Meshorer & Eitan Lerner, 2023. "Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Debashish U. Menon & Oleksandr Kirsanov & Christopher B. Geyer & Terry Magnuson, 2021. "Mammalian SWI/SNF chromatin remodeler is essential for reductional meiosis in males," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    19. Delfina M. Romero & Karine Poirier & Richard Belvindrah & Imane Moutkine & Anne Houllier & Anne-Gaëlle LeMoing & Florence Petit & Anne Boland & Stephan C. Collins & Mariano Soiza-Reilly & Binnaz Yalci, 2022. "Novel role of the synaptic scaffold protein Dlgap4 in ventricular surface integrity and neuronal migration during cortical development," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Yifeng Qi & Bin Zhang, 2021. "Chromatin network retards nucleoli coalescence," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42094-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.