IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41935-x.html
   My bibliography  Save this article

Control of metal oxides’ electronic conductivity through visual intercalation chemical reactions

Author

Listed:
  • Yuanyuan Zhang

    (Donghua University)

  • Xiaohua Zhang

    (Donghua University)

  • Quanquan Pang

    (Peking University)

  • Jianhua Yan

    (Donghua University
    Donghua University
    Donghua University)

Abstract

Cation intercalation is an effective method to optimize the electronic structures of metal oxides, but tuning intercalation structure and conductivity by manipulating ion movement is difficult. Here, we report a visual topochemical synthesis strategy to control intercalation pathways and structures and realize the rapid synthesis of flexible conductive metal oxide films in one minute at room temperature. Using flexible TiO2 nanofiber films as the prototype, we design three charge-driven models to intercalate preset Li+-ions into the TiO2 lattice slowly (µm/s), rapidly (mm/s), or ultrafast (cm/s). The Li+-intercalation causes real-time color changes of the TiO2 films from white to blue and then black, corresponding to the structures of LixTiO2 and LixTiO2-δ, and the enhanced conductivity from 0 to 1 and 40 S/m. This work realizes large-scale and rapid synthesis of flexible TiO2 nanofiber films with tunable conductivity and is expected to extend the synthesis to other conductive metal oxide films.

Suggested Citation

  • Yuanyuan Zhang & Xiaohua Zhang & Quanquan Pang & Jianhua Yan, 2023. "Control of metal oxides’ electronic conductivity through visual intercalation chemical reactions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41935-x
    DOI: 10.1038/s41467-023-41935-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41935-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41935-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haodong Liu & Zhuoying Zhu & Qizhang Yan & Sicen Yu & Xin He & Yan Chen & Rui Zhang & Lu Ma & Tongchao Liu & Matthew Li & Ruoqian Lin & Yiming Chen & Yejing Li & Xing Xing & Yoonjung Choi & Lucy Gao &, 2020. "A disordered rock salt anode for fast-charging lithium-ion batteries," Nature, Nature, vol. 585(7823), pages 63-67, September.
    2. Gang Ou & Yushuai Xu & Bo Wen & Rui Lin & Binghui Ge & Yan Tang & Yuwei Liang & Cheng Yang & Kai Huang & Di Zu & Rong Yu & Wenxing Chen & Jun Li & Hui Wu & Li-Min Liu & Yadong Li, 2018. "Tuning defects in oxides at room temperature by lithium reduction," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Kent J. Griffith & Kamila M. Wiaderek & Giannantonio Cibin & Lauren E. Marbella & Clare P. Grey, 2018. "Niobium tungsten oxides for high-rate lithium-ion energy storage," Nature, Nature, vol. 559(7715), pages 556-563, July.
    4. Zhimi Hu & Xu Xiao & Huanyu Jin & Tianqi Li & Ming Chen & Zhun Liang & Zhengfeng Guo & Jia Li & Jun Wan & Liang Huang & Yanrong Zhang & Guang Feng & Jun Zhou, 2017. "Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiezhu Xu & Zhenming Xu & Tengyu Yao & Miaoran Zhang & Duo Chen & Xiaogang Zhang & Laifa Shen, 2023. "Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Wenqing Zhang & Cenfeng Fu & Jingxiang Low & Delong Duan & Jun Ma & Wenbin Jiang & Yihong Chen & Hengjie Liu & Zeming Qi & Ran Long & Yingfang Yao & Xiaobao Li & Hui Zhang & Zhi Liu & Jinlong Yang & Z, 2022. "High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Gang Sun & Fu-Da Yu & Mi Lu & Qingjun Zhu & Yunshan Jiang & Yongzhi Mao & John A. McLeod & Jason Maley & Jian Wang & Jigang Zhou & Zhenbo Wang, 2022. "Surface chemical heterogeneous distribution in over-lithiated Li1+xCoO2 electrodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Solomon T. Oyakhire & Wenbo Zhang & Andrew Shin & Rong Xu & David T. Boyle & Zhiao Yu & Yusheng Ye & Yufei Yang & James A. Raiford & William Huang & Joel R. Schneider & Yi Cui & Stacey F. Bent, 2022. "Electrical resistance of the current collector controls lithium morphology," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Li Jin & Xiaoyuan Zhou & Fang Wang & Xiang Ning & Yujie Wen & Benteng Song & Changju Yang & Di Wu & Xiaokang Ke & Luming Peng, 2022. "Insights into memory effect mechanisms of layered double hydroxides with solid-state NMR spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Nobuhiro Ogihara & Masaki Hasegawa & Hitoshi Kumagai & Riho Mikita & Naoyuki Nagasako, 2023. "Heterogeneous intercalated metal-organic framework active materials for fast-charging non-aqueous Li-ion capacitors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Rong, Siteng & Tan, Hongzi & Pang, Zhaobin & Zong, Zhiyuan & Zhao, Rongrong & Li, Zhihe & Chen, Zhe-Ning & Zhang, Ning-Ning & Yi, Weiming & Cui, Hongyou, 2022. "Synergetic effect between Pd clusters and oxygen vacancies in hierarchical Nb2O5 for lignin-derived phenol hydrodeoxygenation into benzene," Renewable Energy, Elsevier, vol. 187(C), pages 271-281.
    12. Tianze Zhang & Libo Chang & Xiaofeng Zhang & Hujie Wan & Na Liu & Liujiang Zhou & Xu Xiao, 2022. "Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Annika Ahlberg Tidblad & Kristina Edström & Guiomar Hernández & Iratxe de Meatza & Imanol Landa-Medrano & Jordi Jacas Biendicho & Lluís Trilla & Maarten Buysse & Marcos Ierides & Beatriz Perez Horno &, 2021. "Future Material Developments for Electric Vehicle Battery Cells Answering Growing Demands from an End-User Perspective," Energies, MDPI, vol. 14(14), pages 1-26, July.
    14. Xuan Wei & Chia-Ching Lin & Chuanwan Wu & Nadeem Qaiser & Yichen Cai & Ang-Yu Lu & Kai Qi & Jui-Han Fu & Yu-Hsiang Chiang & Zheng Yang & Lianhui Ding & Ola. S. Ali & Wei Xu & Wenli Zhang & Mohamed Ben, 2022. "Three-dimensional hierarchically porous MoS2 foam as high-rate and stable lithium-ion battery anode," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41935-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.