IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41911-5.html
   My bibliography  Save this article

Warming-induced contraction of tropical convection delays and reduces tropical cyclone formation

Author

Listed:
  • Gan Zhang

    (University of Illinois at Urbana-Champaign)

Abstract

The future risk of tropical cyclones (TCs) strongly depends on changes in TC frequency, but models have persistently produced contrasting projections. A satisfactory explanation of the projected changes also remains elusive. Here we show a warming-induced contraction of tropical convection delays and reduces TC formation. This contraction manifests as stronger equatorial convection and weaker off-equatorial convection. It has been robustly projected by climate models, particularly in the northern hemisphere. This contraction shortens TC seasons by delaying the poleward migration of the intertropical convergence zone. At seasonal peaks of TC activity, the equatorial and off-equatorial components of this contraction are associated with TC-hindering environmental changes. Finally, the convection contraction and associated warming patterns can partly explain the ensemble spread in projecting future TC frequency. This study highlights the role of convection contraction and provides motivation for coordinated research to solidify our confidence in future TC risk projections.

Suggested Citation

  • Gan Zhang, 2023. "Warming-induced contraction of tropical convection delays and reduces tropical cyclone formation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41911-5
    DOI: 10.1038/s41467-023-41911-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41911-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41911-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Sharmila & K. J. E. Walsh, 2018. "Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion," Nature Climate Change, Nature, vol. 8(8), pages 730-736, August.
    2. James P. Kossin & Kerry A. Emanuel & Gabriel A. Vecchi, 2014. "The poleward migration of the location of tropical cyclone maximum intensity," Nature, Nature, vol. 509(7500), pages 349-352, May.
    3. Fengfei Song & L. Ruby Leung & Jian Lu & Lu Dong, 2018. "Seasonally dependent responses of subtropical highs and tropical rainfall to anthropogenic warming," Nature Climate Change, Nature, vol. 8(9), pages 787-792, September.
    4. Savin S. Chand & Kevin J. E. Walsh & Suzana J. Camargo & James P. Kossin & Kevin J. Tory & Michael F. Wehner & Johnny C. L. Chan & Philip J. Klotzbach & Andrew J. Dowdy & Samuel S. Bell & Hamish A. Ra, 2022. "Declining tropical cyclone frequency under global warming," Nature Climate Change, Nature, vol. 12(7), pages 655-661, July.
    5. Richard Seager & Mark Cane & Naomi Henderson & Dong-Eun Lee & Ryan Abernathey & Honghai Zhang, 2019. "Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases," Nature Climate Change, Nature, vol. 9(7), pages 517-522, July.
    6. Tapio Schneider & Tobias Bischoff & Gerald H. Haug, 2014. "Migrations and dynamics of the intertropical convergence zone," Nature, Nature, vol. 513(7516), pages 45-53, September.
    7. Hui Su & Jonathan H. Jiang & J. David Neelin & T. Janice Shen & Chengxing Zhai & Qing Yue & Zhien Wang & Lei Huang & Yong-Sang Choi & Graeme L. Stephens & Yuk L. Yung, 2017. "Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    8. Wenyu Zhou & Shang-Ping Xie & Da Yang, 2019. "Enhanced equatorial warming causes deep-tropical contraction and subtropical monsoon shift," Nature Climate Change, Nature, vol. 9(11), pages 834-839, November.
    9. Raphaël Rousseau-Rizzi & Kerry Emanuel, 2022. "Natural and anthropogenic contributions to the hurricane drought of the 1970s–1980s," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Ryan E. Truchelut & Philip J. Klotzbach & Erica M. Staehling & Kimberly M. Wood & Daniel J. Halperin & Carl J. Schreck & Eric S. Blake, 2022. "Earlier onset of North Atlantic hurricane season with warming oceans," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Fengfei Song & L. Ruby Leung & Jian Lu & Lu Dong & Wenyu Zhou & Bryce Harrop & Yun Qian, 2021. "Emergence of seasonal delay of tropical rainfall during 1979–2019," Nature Climate Change, Nature, vol. 11(7), pages 605-612, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savin Chand & Scott Power & Kevin Walsh & Neil Holbrook & Kathleen McInnes & Kevin Tory & Hamish Ramsay & Ron Hoeke & Anthony S. Kiem, 2023. "Climate processes and drivers in the Pacific and global warming: a review for informing Pacific planning agencies," Climatic Change, Springer, vol. 176(2), pages 1-16, February.
    2. Xiangbo Feng & Nicholas P. Klingaman & Kevin I. Hodges, 2021. "Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. John Miller & Guilherme Vieira Silva & Darrell Strauss, 2023. "Divergence of tropical cyclone hazard based on wind-weighted track distributions in the Coral Sea, over 50 years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2591-2617, March.
    4. Anil Deo & Savin S. Chand & R. Duncan McIntosh & Bipen Prakash & Neil J. Holbrook & Andrew Magee & Alick Haruhiru & Philip Malsale, 2022. "Severe tropical cyclones over southwest Pacific Islands: economic impacts and implications for disaster risk management," Climatic Change, Springer, vol. 172(3), pages 1-23, June.
    5. Krishneel K. Sharma & Danielle C. Verdon-Kidd & Andrew D. Magee, 2023. "The influence of large-scale climate modes on tropical cyclone tracks in the southwest Pacific," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2285-2307, September.
    6. Yi Li & Youmin Tang & Shuai Wang & Ralf Toumi & Xiangzhou Song & Qiang Wang, 2023. "Recent increases in tropical cyclone rapid intensification events in global offshore regions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Ibrahim Sufiyan, 2020. "Rainfall Trend And It Impact In Keffi Nasarawa State," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 4(1), pages 23-26, June.
    8. Chin‐Hsien Yu & Bruce A. McCarl & Jian‐Da Zhu, 2022. "Market response to typhoons: The role of information and expectations," Southern Economic Journal, John Wiley & Sons, vol. 89(2), pages 496-521, October.
    9. Raphaël Rousseau-Rizzi & Kerry Emanuel, 2022. "Natural and anthropogenic contributions to the hurricane drought of the 1970s–1980s," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Pavan Harika Raavi & Jung-Eun Chu & Axel Timmermann & Sun-Seon Lee & Kevin J. E. Walsh, 2023. "Moisture control of tropical cyclones in high-resolution simulations of paleoclimate and future climate," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. David Byrne & Kevin Horsburgh & Brian Zachry & Paolo Cipollini, 2017. "Using remotely sensed data to modify wind forcing in operational storm surge forecasting," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 275-293, October.
    12. Ruyu Gan & Qi Liu & Gang Huang & Kaiming Hu & Xichen Li, 2023. "Greenhouse warming and internal variability increase extreme and central Pacific El Niño frequency since 1980," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Xiaoting Sun & Qinghua Ding & Shih-Yu Simon Wang & Dániel Topál & Qingquan Li & Christopher Castro & Haiyan Teng & Rui Luo & Yihui Ding, 2022. "Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Christine M. Albano & Maureen I. McCarthy & Michael D. Dettinger & Stephanie A. McAfee, 2021. "Techniques for constructing climate scenarios for stress test applications," Climatic Change, Springer, vol. 164(3), pages 1-25, February.
    15. Humberto Millán & Idalberto Macías & Jakeline Rabelo-Lima, 2022. "Hurst scaling with crossover of a drought indicator: a case study in Belem and Manaus, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 69-93, January.
    16. Kevin Walsh & Christopher J. White & Kathleen McInnes & John Holmes & Sandra Schuster & Harald Richter & Jason P. Evans & Alejandro Luca & Robert A. Warren, 2016. "Natural hazards in Australia: storms, wind and hail," Climatic Change, Springer, vol. 139(1), pages 55-67, November.
    17. Jian Cao & Haikun Zhao & Bin Wang & Liguang Wu, 2021. "Hemisphere-asymmetric tropical cyclones response to anthropogenic aerosol forcing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    18. Kathleen A. Schiro & Hui Su & Fiaz Ahmed & Ni Dai & Clare E. Singer & Pierre Gentine & Gregory S. Elsaesser & Jonathan H. Jiang & Yong-Sang Choi & J. David Neelin, 2022. "Model spread in tropical low cloud feedback tied to overturning circulation response to warming," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Yiping Yang & Lanlan Zhang & Liang Yi & Fuchang Zhong & Zhengyao Lu & Sui Wan & Yan Du & Rong Xiang, 2023. "A contracting Intertropical Convergence Zone during the Early Heinrich Stadial 1," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Alessandra Giannini & Alexey Kaplan, 2019. "The role of aerosols and greenhouse gases in Sahel drought and recovery," Climatic Change, Springer, vol. 152(3), pages 449-466, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41911-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.