IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v8y2018i8d10.1038_s41558-018-0227-5.html
   My bibliography  Save this article

Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion

Author

Listed:
  • S. Sharmila

    (University of Melbourne
    Federation University)

  • K. J. E. Walsh

    (University of Melbourne)

Abstract

Recent research indicates that the annual-mean locations of tropical cyclones have migrated toward higher latitudes. Concurrently, an anthropogenically forced tropical expansion has been observed, yet the connection between the two processes remains little-explored. Here, using observational and reanalysis data, we investigate how large-scale dynamical effects, combined with coherent changes in the regional Hadley circulation, explain recent changes in regional tropical cyclone genesis over 1980–2014. We show that the recent anomalous upper-level weakening of the rising branch of the Hadley circulation in the deep tropics, possibly induced by the increased vertical stability, has likely suppressed the low-latitude tropical cyclone genesis in most ocean basins via anomalous large-scale subsidence. Regional Hadley circulation variations have also favoured a poleward displacement of tropical-cyclone-favourable climate conditions through poleward shift of the Hadley circulation’s meridional extent. With projections indicating continued tropical expansion, these results indicate that tropical cyclone genesis will also continue to shift poleward, potentially increasing tropical-cyclone-related hazards in higher-latitude regions.

Suggested Citation

  • S. Sharmila & K. J. E. Walsh, 2018. "Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion," Nature Climate Change, Nature, vol. 8(8), pages 730-736, August.
  • Handle: RePEc:nat:natcli:v:8:y:2018:i:8:d:10.1038_s41558-018-0227-5
    DOI: 10.1038/s41558-018-0227-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-018-0227-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-018-0227-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishneel K. Sharma & Danielle C. Verdon-Kidd & Andrew D. Magee, 2023. "The influence of large-scale climate modes on tropical cyclone tracks in the southwest Pacific," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2285-2307, September.
    2. Anil Deo & Savin S. Chand & R. Duncan McIntosh & Bipen Prakash & Neil J. Holbrook & Andrew Magee & Alick Haruhiru & Philip Malsale, 2022. "Severe tropical cyclones over southwest Pacific Islands: economic impacts and implications for disaster risk management," Climatic Change, Springer, vol. 172(3), pages 1-23, June.
    3. Gan Zhang, 2023. "Warming-induced contraction of tropical convection delays and reduces tropical cyclone formation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Savin Chand & Scott Power & Kevin Walsh & Neil Holbrook & Kathleen McInnes & Kevin Tory & Hamish Ramsay & Ron Hoeke & Anthony S. Kiem, 2023. "Climate processes and drivers in the Pacific and global warming: a review for informing Pacific planning agencies," Climatic Change, Springer, vol. 176(2), pages 1-16, February.
    5. Rob Roggema, 2019. "Design for Disruption: Creating Anti-Fragile Urban Delta Landscapes," Urban Planning, Cogitatio Press, vol. 4(1), pages 113-122.
    6. Pavan Harika Raavi & Jung-Eun Chu & Axel Timmermann & Sun-Seon Lee & Kevin J. E. Walsh, 2023. "Moisture control of tropical cyclones in high-resolution simulations of paleoclimate and future climate," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. John Miller & Guilherme Vieira Silva & Darrell Strauss, 2023. "Divergence of tropical cyclone hazard based on wind-weighted track distributions in the Coral Sea, over 50 years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2591-2617, March.
    8. Xiangbo Feng & Nicholas P. Klingaman & Kevin I. Hodges, 2021. "Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:8:y:2018:i:8:d:10.1038_s41558-018-0227-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.