IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41910-6.html
   My bibliography  Save this article

Genomic adaptation of giant viruses in polar oceans

Author

Listed:
  • Lingjie Meng

    (Kyoto University, Gokasho)

  • Tom O. Delmont

    (Univ Evry, Université Paris-Saclay
    FR2022/Tara GOsee)

  • Morgan Gaïa

    (Univ Evry, Université Paris-Saclay
    FR2022/Tara GOsee)

  • Eric Pelletier

    (Univ Evry, Université Paris-Saclay
    FR2022/Tara GOsee)

  • Antonio Fernàndez-Guerra

    (University of Copenhagen)

  • Samuel Chaffron

    (FR2022/Tara GOsee
    École Centrale Nantes, CNRS, LS2N, UMR 6004)

  • Russell Y. Neches

    (Kyoto University, Gokasho)

  • Junyi Wu

    (Kyoto University, Gokasho)

  • Hiroto Kaneko

    (Kyoto University, Gokasho)

  • Hisashi Endo

    (Kyoto University, Gokasho)

  • Hiroyuki Ogata

    (Kyoto University, Gokasho)

Abstract

Despite being perennially frigid, polar oceans form an ecosystem hosting high and unique biodiversity. Various organisms show different adaptive strategies in this habitat, but how viruses adapt to this environment is largely unknown. Viruses of phyla Nucleocytoviricota and Mirusviricota are groups of eukaryote-infecting large and giant DNA viruses with genomes encoding a variety of functions. Here, by leveraging the Global Ocean Eukaryotic Viral database, we investigate the biogeography and functional repertoire of these viruses at a global scale. We first confirm the existence of an ecological barrier that clearly separates polar and nonpolar viral communities, and then demonstrate that temperature drives dramatic changes in the virus–host network at the polar–nonpolar boundary. Ancestral niche reconstruction suggests that adaptation of these viruses to polar conditions has occurred repeatedly over the course of evolution, with polar-adapted viruses in the modern ocean being scattered across their phylogeny. Numerous viral genes are specifically associated with polar adaptation, although most of their homologues are not identified as polar-adaptive genes in eukaryotes. These results suggest that giant viruses adapt to cold environments by changing their functional repertoire, and this viral evolutionary strategy is distinct from the polar adaptation strategy of their hosts.

Suggested Citation

  • Lingjie Meng & Tom O. Delmont & Morgan Gaïa & Eric Pelletier & Antonio Fernàndez-Guerra & Samuel Chaffron & Russell Y. Neches & Junyi Wu & Hiroto Kaneko & Hisashi Endo & Hiroyuki Ogata, 2023. "Genomic adaptation of giant viruses in polar oceans," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41910-6
    DOI: 10.1038/s41467-023-41910-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41910-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41910-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michiyo Yamamoto-Kawai & Eddy Carmack & Fiona McLaughlin, 2006. "Nitrogen balance and Arctic throughflow," Nature, Nature, vol. 443(7107), pages 43-43, September.
    2. Lionel Guidi & Samuel Chaffron & Lucie Bittner & Damien Eveillard & Abdelhalim Larhlimi & Simon Roux & Youssef Darzi & Stephane Audic & Léo Berline & Jennifer R. Brum & Luis Pedro Coelho & Julio Cesar, 2016. "Plankton networks driving carbon export in the oligotrophic ocean," Nature, Nature, vol. 532(7600), pages 465-470, April.
    3. Mohammad Moniruzzaman & Alaina R. Weinheimer & Carolina A. Martinez-Gutierrez & Frank O. Aylward, 2020. "Widespread endogenization of giant viruses shapes genomes of green algae," Nature, Nature, vol. 588(7836), pages 141-145, December.
    4. Mohammad Moniruzzaman & Carolina A. Martinez-Gutierrez & Alaina R. Weinheimer & Frank O. Aylward, 2020. "Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Quentin Carradec & Eric Pelletier & Corinne Da Silva & Adriana Alberti & Yoann Seeleuthner & Romain Blanc-Mathieu & Gipsi Lima-Mendez & Fabio Rocha & Leila Tirichine & Karine Labadie & Amos Kirilovsky, 2018. "A global ocean atlas of eukaryotic genes," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    6. Frederik Schulz & Simon Roux & David Paez-Espino & Sean Jungbluth & David A. Walsh & Vincent J. Denef & Katherine D. McMahon & Konstantinos T. Konstantinidis & Emiley A. Eloe-Fadrosh & Nikos C. Kyrpid, 2020. "Giant virus diversity and host interactions through global metagenomics," Nature, Nature, vol. 578(7795), pages 432-436, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofia Rigou & Sébastien Santini & Chantal Abergel & Jean-Michel Claverie & Matthieu Legendre, 2022. "Past and present giant viruses diversity explored through permafrost metagenomics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Patrick Arthofer & Florian Panhölzl & Vincent Delafont & Alban Hay & Siegfried Reipert & Norbert Cyran & Stefanie Wienkoop & Anouk Willemsen & Ines Sifaoui & Iñigo Arberas-Jiménez & Frederik Schulz & , 2024. "A giant virus infecting the amoeboflagellate Naegleria," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Lulu Li & Hehong Zhang & Zihang Yang & Chen Wang & Shanshan Li & Chen Cao & Tongsong Yao & Zhongyan Wei & Yanjun Li & Jianping Chen & Zongtao Sun, 2022. "Independently evolved viral effectors convergently suppress DELLA protein SLR1-mediated broad-spectrum antiviral immunity in rice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Ana-Sofia Eria-Oliveira & Mathilde Folacci & Anne Amandine Chassot & Sandrine Fedou & Nadine Thézé & Dmitrii Zabelskii & Alexey Alekseev & Ernst Bamberg & Valentin Gordeliy & Guillaume Sandoz & Michel, 2024. "Hijacking of internal calcium dynamics by intracellularly residing viral rhodopsins," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yanchun You & Xueqiong Sun & Minglei Ma & Jiamin He & Ling Li & Felipe Wendt Porto & Senjie Lin, 2022. "Trypsin is a coordinate regulator of N and P nutrients in marine phytoplankton," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Flora Vincent & Matti Gralka & Guy Schleyer & Daniella Schatz & Miguel Cabrera-Brufau & Constanze Kuhlisch & Andreas Sichert & Silvia Vidal-Melgosa & Kyle Mayers & Noa Barak-Gavish & J. Michel Flores , 2023. "Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Jianhua Wang & Guan-Zhu Han, 2023. "Genome mining shows that retroviruses are pervasively invading vertebrate genomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Hugo Bisio & Matthieu Legendre & Claire Giry & Nadege Philippe & Jean-Marie Alempic & Sandra Jeudy & Chantal Abergel, 2023. "Evolution of giant pandoravirus revealed by CRISPR/Cas9," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Javier Lopez-Simon & Marina Vila-Nistal & Aleksandra Rosenova & Daniele Corte & Federico Baltar & Manuel Martinez-Garcia, 2023. "Viruses under the Antarctic Ice Shelf are active and potentially involved in global nutrient cycles," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Trang T. H. Nguyen & Emily J. Zakem & Ali Ebrahimi & Julia Schwartzman & Tolga Caglar & Kapil Amarnath & Uria Alcolombri & François J. Peaudecerf & Terence Hwa & Roman Stocker & Otto X. Cordero & Naom, 2022. "Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Joanna Warwick-Dugdale & Funing Tian & Michelle L. Michelsen & Dylan R. Cronin & Karen Moore & Audrey Farbos & Lauren Chittick & Ashley Bell & Ahmed A. Zayed & Holger H. Buchholz & Luis M. Bolanos & R, 2024. "Long-read powered viral metagenomics in the oligotrophic Sargasso Sea," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Huawei Zhu & Liru Xu & Guodong Luan & Tao Zhan & Zepeng Kang & Chunli Li & Xuefeng Lu & Xueli Zhang & Zhiguang Zhu & Yanping Zhang & Yin Li, 2022. "A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Shaojun Pan & Chengkai Zhu & Xing-Ming Zhao & Luis Pedro Coelho, 2022. "A deep siamese neural network improves metagenome-assembled genomes in microbiome datasets across different environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Qianqian Shao & Irina V. Agarkova & Eric A. Noel & David D. Dunigan & Yunshu Liu & Aohan Wang & Mingcheng Guo & Linlin Xie & Xinyue Zhao & Michael G. Rossmann & James L. Etten & Thomas Klose & Qiangli, 2022. "Near-atomic, non-icosahedrally averaged structure of giant virus Paramecium bursaria chlorella virus 1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Christian Winter & Jérôme P Payet & Curtis A Suttle, 2012. "Modeling the Winter–to–Summer Transition of Prokaryotic and Viral Abundance in the Arctic Ocean," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41910-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.