IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41685-w.html
   My bibliography  Save this article

Impact of global climate cooling on Ordovician marine biodiversity

Author

Listed:
  • Daniel Eliahou Ontiveros

    (Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, UMR 8187 LOG)

  • Gregory Beaugrand

    (Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, UMR 8187 LOG)

  • Bertrand Lefebvre

    (Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE)

  • Chloe Markussen Marcilly

    (University of Oslo)

  • Thomas Servais

    (Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo)

  • Alexandre Pohl

    (UMR 6282 CNRS, Université de Bourgogne)

Abstract

Global cooling has been proposed as a driver of the Great Ordovician Biodiversification Event, the largest radiation of Phanerozoic marine animal Life. Yet, mechanistic understanding of the underlying pathways is lacking and other possible causes are debated. Here we couple a global climate model with a macroecological model to reconstruct global biodiversity patterns during the Ordovician. In our simulations, an inverted latitudinal biodiversity gradient characterizes the late Cambrian and Early Ordovician when climate was much warmer than today. During the Mid-Late Ordovician, climate cooling simultaneously permits the development of a modern latitudinal biodiversity gradient and an increase in global biodiversity. This increase is a consequence of the ecophysiological limitations to marine Life and is robust to uncertainties in both proxy-derived temperature reconstructions and organism physiology. First-order model-data agreement suggests that the most conspicuous rise in biodiversity over Earth’s history – the Great Ordovician Biodiversification Event – was primarily driven by global cooling.

Suggested Citation

  • Daniel Eliahou Ontiveros & Gregory Beaugrand & Bertrand Lefebvre & Chloe Markussen Marcilly & Thomas Servais & Alexandre Pohl, 2023. "Impact of global climate cooling on Ordovician marine biodiversity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41685-w
    DOI: 10.1038/s41467-023-41685-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41685-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41685-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas W. Wong Hearing & Alexandre Pohl & Mark Williams & Yannick Donnadieu & Thomas H. P. Harvey & Christopher R. Scotese & Pierre Sepulchre & Alain Franc & Thijs R. A. Vandenbroucke, 2021. "Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Grégory Beaugrand & Martin Edwards & Virginie Raybaud & Eric Goberville & Richard R. Kirby, 2015. "Future vulnerability of marine biodiversity compared with contemporary and past changes," Nature Climate Change, Nature, vol. 5(7), pages 695-701, July.
    3. Alexander J. Krause & Benjamin J. W. Mills & Shuang Zhang & Noah J. Planavsky & Timothy M. Lenton & Simon W. Poulton, 2018. "Stepwise oxygenation of the Paleozoic atmosphere," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Alexandre Pohl & Andy Ridgwell & Richard G. Stockey & Christophe Thomazo & Andrew Keane & Emmanuelle Vennin & Christopher R. Scotese, 2022. "Continental configuration controls ocean oxygenation during the Phanerozoic," Nature, Nature, vol. 608(7923), pages 523-527, August.
    5. Joanne M. Bennett & Jennifer Sunday & Piero Calosi & Fabricio Villalobos & Brezo Martínez & Rafael Molina-Venegas & Miguel B. Araújo & Adam C. Algar & Susana Clusella-Trullas & Bradford A. Hawkins & S, 2021. "The evolution of critical thermal limits of life on Earth," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farahmand, Shekoofeh & Hilmi, Nathalie & Cinar, Mine & Safa, Alain & Lam, Vicky W.Y. & Djoundourian, Salpie & Shahin, Wassim & Ben Lamine, Emna & Schickele, Alexandre & Guidetti, Paolo & Allemand, Den, 2023. "Climate change impacts on Mediterranean fisheries: A sensitivity and vulnerability analysis for main commercial species," Ecological Economics, Elsevier, vol. 211(C).
    2. Guoxiong Chen & Qiuming Cheng & Timothy W. Lyons & Jun Shen & Frits Agterberg & Ning Huang & Molei Zhao, 2022. "Reconstructing Earth’s atmospheric oxygenation history using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Chaalali, Aurélie & Beaugrand, Grégory & Raybaud, Virginie & Lassalle, Géraldine & Saint-Béat, Blanche & Le Loc’h, François & Bopp, Laurent & Tecchio, Samuele & Safi, Georges & Chifflet, Marina & Lobr, 2016. "From species distributions to ecosystem structure and function: A methodological perspective," Ecological Modelling, Elsevier, vol. 334(C), pages 78-90.
    4. Anna V. Shapiro & Christoph Brühl & Klaus Klingmüller & Benedikt Steil & Alexander I. Shapiro & Veronika Witzke & Nadiia Kostogryz & Laurent Gizon & Sami K. Solanki & Jos Lelieveld, 2023. "Metal-rich stars are less suitable for the evolution of life on their planets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Ali Ismaeel & Amos P. K. Tai & Erone Ghizoni Santos & Heveakore Maraia & Iris Aalto & Jan Altman & Jiří Doležal & Jonas J. Lembrechts & José Luís Camargo & Juha Aalto & Kateřina Sam & Lair Cristina Av, 2024. "Patterns of tropical forest understory temperatures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Chen, Haojie & Costanza, Robert & Kubiszewski, Ida, 2022. "Legitimacy and limitations of valuing the oxygen production of ecosystems," Ecosystem Services, Elsevier, vol. 58(C).
    7. Cheung, William W.L. & Jones, Miranda C. & Reygondeau, Gabriel & Stock, Charles A. & Lam, Vicky W.Y. & Frölicher, Thomas L., 2016. "Structural uncertainty in projecting global fisheries catches under climate change," Ecological Modelling, Elsevier, vol. 325(C), pages 57-66.
    8. Tais W. Dahl & Magnus A. R. Harding & Julia Brugger & Georg Feulner & Kion Norrman & Barry H. Lomax & Christopher K. Junium, 2022. "Low atmospheric CO2 levels before the rise of forested ecosystems," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Hester Weaving & John S. Terblanche & Patrice Pottier & Sinead English, 2022. "Meta-analysis reveals weak but pervasive plasticity in insect thermal limits," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41685-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.