IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41624-9.html
   My bibliography  Save this article

Efficiently accelerated free electrons by metallic laser accelerator

Author

Listed:
  • Dingguo Zheng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Siyuan Huang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jun Li

    (Chinese Academy of Sciences)

  • Yuan Tian

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yongzhao Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhongwen Li

    (Chinese Academy of Sciences)

  • Huanfang Tian

    (Chinese Academy of Sciences)

  • Huaixin Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Jianqi Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory
    Southern University of Science and Technology)

Abstract

Strong electron-photon interactions occurring in a dielectric laser accelerator provide the potential for development of a compact electron accelerator. Theoretically, metallic materials exhibiting notable surface plasmon-field enhancements can possibly generate a high electron acceleration capability. Here, we present a design for metallic material-based on-chip laser-driven accelerators that show a remarkable electron acceleration capability, as demonstrated in ultrafast electron microscopy investigations. Under phase-matching conditions, efficient and continuous acceleration of free electrons on a periodic nanostructure can be achieved. Importantly, an asymmetric spectral structure in which the vast majority of the electrons are in the energy-gain states has been obtained by means of a periodic bowtie-structure accelerator. Due to the presence of surface plasmon enhancement and nonlinear optical effects, the maximum acceleration gradient can reach as high as 0.335 GeV/m. This demonstrates that metallic laser accelerator could provide a way to develop compact accelerators on chip.

Suggested Citation

  • Dingguo Zheng & Siyuan Huang & Jun Li & Yuan Tian & Yongzhao Zhang & Zhongwen Li & Huanfang Tian & Huaixin Yang & Jianqi Li, 2023. "Efficiently accelerated free electrons by metallic laser accelerator," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41624-9
    DOI: 10.1038/s41467-023-41624-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41624-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41624-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. A. Peralta & K. Soong & R. J. England & E. R. Colby & Z. Wu & B. Montazeri & C. McGuinness & J. McNeur & K. J. Leedle & D. Walz & E. B. Sozer & B. Cowan & B. Schwartz & G. Travish & R. L. Byer, 2013. "Demonstration of electron acceleration in a laser-driven dielectric microstructure," Nature, Nature, vol. 503(7474), pages 91-94, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    2. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    3. Tal Fishman & Urs Haeusler & Raphael Dahan & Michael Yannai & Yuval Adiv & Tom Lenkiewicz Abudi & Roy Shiloh & Ori Eyal & Peyman Yousefi & Gadi Eisenstein & Peter Hommelhoff & Ido Kaminer, 2023. "Imaging the field inside nanophotonic accelerators," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
    5. Li, Yong & Yang, Jie & Song, Jian, 2015. "Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1445-1461.
    6. Li, Yong & Yang, Jie & Song, Jian, 2017. "Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 652-663.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41624-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.