IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41521-1.html
   My bibliography  Save this article

Estimating the contribution of CD4 T cell subset proliferation and differentiation to HIV persistence

Author

Listed:
  • Daniel B. Reeves

    (Fred Hutchinson Cancer Center
    University of Washington)

  • Charline Bacchus-Souffan

    (Vir Biotechnology, Inc)

  • Mark Fitch

    (University of California, University Avenue and Oxford St)

  • Mohamed Abdel-Mohsen

    (The Wistar Institute)

  • Rebecca Hoh

    (University of California)

  • Haelee Ahn

    (University of California San Francisco)

  • Mars Stone

    (Vitalant Research Institute)

  • Frederick Hecht

    (University of California San Francisco)

  • Jeffrey Martin

    (University of California San Francisco School of Medicine)

  • Steven G. Deeks

    (University of California)

  • Marc K. Hellerstein

    (University of California, University Avenue and Oxford St)

  • Joseph M. McCune

    (Bill & Melinda Gates Foundation)

  • Joshua T. Schiffer

    (Fred Hutchinson Cancer Center
    Fred Hutchinson Cancer Center
    University of Washington)

  • Peter W. Hunt

    (University of California San Francisco)

Abstract

Persistence of HIV in people living with HIV (PWH) on suppressive antiretroviral therapy (ART) has been linked to physiological mechanisms of CD4+ T cells. Here, in the same 37 male PWH on ART we measure longitudinal kinetics of HIV DNA and cell turnover rates in five CD4 cell subsets: naïve (TN), stem-cell- (TSCM), central- (TCM), transitional- (TTM), and effector-memory (TEM). HIV decreases in TTM and TEM but not in less-differentiated subsets. Cell turnover is ~10 times faster than HIV clearance in memory subsets, implying that cellular proliferation consistently creates HIV DNA. The optimal mathematical model for these integrated data sets posits HIV DNA also passages between CD4 cell subsets via cellular differentiation. Estimates are heterogeneous, but in an average participant’s year ~10 (in TN and TSCM) and ~104 (in TCM, TTM, TEM) proviruses are generated by proliferation while ~103 proviruses passage via cell differentiation (per million CD4). In simulations, therapies blocking proliferation and/or enhancing differentiation could reduce HIV DNA by 1-2 logs over 3 years. In summary, HIV exploits cellular proliferation and differentiation to persist during ART but clears faster in more proliferative/differentiated CD4 cell subsets and the same physiological mechanisms sustaining HIV might be temporarily modified to reduce it.

Suggested Citation

  • Daniel B. Reeves & Charline Bacchus-Souffan & Mark Fitch & Mohamed Abdel-Mohsen & Rebecca Hoh & Haelee Ahn & Mars Stone & Frederick Hecht & Jeffrey Martin & Steven G. Deeks & Marc K. Hellerstein & Jos, 2023. "Estimating the contribution of CD4 T cell subset proliferation and differentiation to HIV persistence," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41521-1
    DOI: 10.1038/s41467-023-41521-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41521-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41521-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christian L Althaus & Beda Joos & Alan S Perelson & Huldrych F Günthard, 2014. "Quantifying the Turnover of Transcriptional Subclasses of HIV-1-Infected Cells," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-11, October.
    2. Katherine M. Bruner & Zheng Wang & Francesco R. Simonetti & Alexandra M. Bender & Kyungyoon J. Kwon & Srona Sengupta & Emily J. Fray & Subul A. Beg & Annukka A. R. Antar & Katharine M. Jenike & Lynn N, 2019. "A quantitative approach for measuring the reservoir of latent HIV-1 proviruses," Nature, Nature, vol. 566(7742), pages 120-125, February.
    3. Federica Sallusto & Danielle Lenig & Reinhold Förster & Martin Lipp & Antonio Lanzavecchia, 1999. "Two subsets of memory T lymphocytes with distinct homing potentials and effector functions," Nature, Nature, vol. 402(6763), pages 34-38, December.
    4. Iain C. Clark & Prakriti Mudvari & Shravan Thaploo & Samuel Smith & Mohammad Abu-Laban & Mehdi Hamouda & Marc Theberge & Sakshi Shah & Sung Hee Ko & Liliana Pérez & Daniel G. Bunis & James S. Lee & Di, 2023. "HIV silencing and cell survival signatures in infected T cell reservoirs," Nature, Nature, vol. 614(7947), pages 318-325, February.
    5. Federica Sallusto & Danielle Lenig & Reinhold Förster & Martin Lipp & Antonio Lanzavecchia, 1999. "Two subsets of memory T lymphocytes with distinct homing potentials and effector functions," Nature, Nature, vol. 401(6754), pages 708-712, October.
    6. S. Jaafoura & M. G. de Goër de Herve & E. A. Hernandez-Vargas & H. Hendel-Chavez & M. Abdoh & M. C. Mateo & R. Krzysiek & M. Merad & R. Seng & M. Tardieu & J. F. Delfraissy & C. Goujard & Y. Taoufik, 2014. "Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4+ memory T Cells," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    7. Weiwei Sun & Ce Gao & Ciputra Adijaya Hartana & Matthew R. Osborn & Kevin B. Einkauf & Xiaodong Lian & Benjamin Bone & Nathalie Bonheur & Tae-Wook Chun & Eric S. Rosenberg & Bruce D. Walker & Xu G. Yu, 2023. "Phenotypic signatures of immune selection in HIV-1 reservoir cells," Nature, Nature, vol. 614(7947), pages 309-317, February.
    8. Alan S. Perelson & Paulina Essunger & Yunzhen Cao & Mika Vesanen & Arlene Hurley & Kalle Saksela & Martin Markowitz & David D. Ho, 1997. "Decay characteristics of HIV-1-infected compartments during combination therapy," Nature, Nature, vol. 387(6629), pages 188-191, May.
    9. Pierre Gantner & Amélie Pagliuzza & Marion Pardons & Moti Ramgopal & Jean-Pierre Routy & Rémi Fromentin & Nicolas Chomont, 2020. "Single-cell TCR sequencing reveals phenotypically diverse clonally expanded cells harboring inducible HIV proviruses during ART," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    10. Daniel B. Reeves & Elizabeth R. Duke & Thor A. Wagner & Sarah E. Palmer & Adam M. Spivak & Joshua T. Schiffer, 2018. "A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    11. Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel B. Reeves & Christian Gaebler & Thiago Y. Oliveira & Michael J. Peluso & Joshua T. Schiffer & Lillian B. Cohn & Steven G. Deeks & Michel C. Nussenzweig, 2023. "Impact of misclassified defective proviruses on HIV reservoir measurements," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Caroline Dufour & Corentin Richard & Marion Pardons & Marta Massanella & Antoine Ackaoui & Ben Murrell & Bertrand Routy & Réjean Thomas & Jean-Pierre Routy & Rémi Fromentin & Nicolas Chomont, 2023. "Phenotypic characterization of single CD4+ T cells harboring genetically intact and inducible HIV genomes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Yiyi Zhang & Sidan Tian & Liping Huang & Yanan Li & Yuan Lu & Hongyu Li & Guiping Chen & Fanling Meng & Gang L. Liu & Xiangliang Yang & Jiasheng Tu & Chunmeng Sun & Liang Luo, 2022. "Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune therapy for postsurgical cancer treatment," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Samson, Adeline & Lavielle, Marc & Mentre, France, 2006. "Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1562-1574, December.
    5. Yuka Maeda & Hisashi Wada & Daisuke Sugiyama & Takuro Saito & Takuma Irie & Kota Itahashi & Kodai Minoura & Susumu Suzuki & Takashi Kojima & Kazuhiro Kakimi & Jun Nakajima & Takeru Funakoshi & Shinsuk, 2021. "Depletion of central memory CD8+ T cells might impede the antitumor therapeutic effect of Mogamulizumab," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Sarah Cappuyns & Gino Philips & Vincent Vandecaveye & Bram Boeckx & Rogier Schepers & Thomas Van Brussel & Ingrid Arijs & Aurelie Mechels & Ayse Bassez & Francesca Lodi & Joris Jaekers & Halit Topal &, 2023. "PD-1- CD45RA+ effector-memory CD8 T cells and CXCL10+ macrophages are associated with response to atezolizumab plus bevacizumab in advanced hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Marion Pardons & Basiel Cole & Laurens Lambrechts & Willem van Snippenberg & Sofie Rutsaert & Ytse Noppe & Nele De Langhe & Annemieke Dhondt & Jerel Vega & Filmon Eyassu & Erik Nijs & Ellen Van Gulck , 2023. "Potent latency reversal by Tat RNA-containing nanoparticle enables multi-omic analysis of the HIV-1 reservoir," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Daan K. J. Pieren & Sebastián G. Kuguel & Joel Rosado & Alba G. Robles & Joan Rey-Cano & Cristina Mancebo & Juliana Esperalba & Vicenç Falcó & María J. Buzón & Meritxell Genescà, 2023. "Limited induction of polyfunctional lung-resident memory T cells against SARS-CoV-2 by mRNA vaccination compared to infection," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Christian E. Galarza & Luis M. Castro & Francisco Louzada & Victor H. Lachos, 2020. "Quantile regression for nonlinear mixed effects models: a likelihood based perspective," Statistical Papers, Springer, vol. 61(3), pages 1281-1307, June.
    10. Sunil K. Ahuja & Muthu Saravanan Manoharan & Grace C. Lee & Lyle R. McKinnon & Justin A. Meunier & Maristella Steri & Nathan Harper & Edoardo Fiorillo & Alisha M. Smith & Marcos I. Restrepo & Anne P. , 2023. "Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection," Nature Communications, Nature, vol. 14(1), pages 1-31, December.
    11. James M Billingsley & Premeela A Rajakumar & Michelle A Connole & Nadine C Salisch & Sama Adnan & Yury V Kuzmichev & Henoch S Hong & R Keith Reeves & Hyung-joo Kang & Wenjun Li & Qingsheng Li & Ashley, 2015. "Characterization of CD8+ T Cell Differentiation following SIVΔnef Vaccination by Transcription Factor Expression Profiling," PLOS Pathogens, Public Library of Science, vol. 11(3), pages 1-23, March.
    12. Nicolas Degauque & Françoise Boeffard & Yohann Foucher & Caroline Ballet & Sophie Brouard & Jean-Paul Soulillou, 2011. "The Blood of Healthy Individuals Exhibits CD8 T Cells with a Highly Altered TCR Vb Repertoire but with an Unmodified Phenotype," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-12, June.
    13. Eva M. Stevenson & Sandra Terry & Dennis Copertino & Louise Leyre & Ali Danesh & Jared Weiler & Adam R. Ward & Pragya Khadka & Evan McNeil & Kevin Bernard & Itzayana G. Miller & Grant B. Ellsworth & C, 2022. "SARS CoV-2 mRNA vaccination exposes latent HIV to Nef-specific CD8+ T-cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    15. Ibirénoyé Romaric Sodjahin & Fabienne Femenia & Obafemi Philippe Koutchade & A. Carpentier, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data [Valeur économique des effets agronomiques de la diversification de," Working Papers hal-03639951, HAL.
    16. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    17. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    18. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    19. Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
    20. Laura Azzimonti & Francesca Ieva & Anna Maria Paganoni, 2013. "Nonlinear nonparametric mixed-effects models for unsupervised classification," Computational Statistics, Springer, vol. 28(4), pages 1549-1570, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41521-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.