IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27574-0.html
   My bibliography  Save this article

Depletion of central memory CD8+ T cells might impede the antitumor therapeutic effect of Mogamulizumab

Author

Listed:
  • Yuka Maeda

    (Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center)

  • Hisashi Wada

    (Osaka University Graduate School of Medicine)

  • Daisuke Sugiyama

    (Nagoya University Graduate School of Medicine)

  • Takuro Saito

    (Osaka University Graduate School of Medicine)

  • Takuma Irie

    (Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center)

  • Kota Itahashi

    (Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center)

  • Kodai Minoura

    (Nagoya University Graduate School of Medicine)

  • Susumu Suzuki

    (Aichi Medical University)

  • Takashi Kojima

    (National Cancer Center Hospital East)

  • Kazuhiro Kakimi

    (The University of Tokyo Hospital)

  • Jun Nakajima

    (Graduate School of Medicine, The University of Tokyo)

  • Takeru Funakoshi

    (Keio University School of Medicine)

  • Shinsuke Iida

    (Nagoya City University Institute of Medical and Pharmaceutical Sciences)

  • Mikio Oka

    (Kawasaki Medical School)

  • Teppei Shimamura

    (Nagoya University Graduate School of Medicine)

  • Toshihiko Doi

    (National Cancer Center Hospital East)

  • Yuichiro Doki

    (Osaka University Graduate School of Medicine)

  • Eiichi Nakayama

    (Kawasaki University of Medical Welfare)

  • Ryuzo Ueda

    (Aichi Medical University)

  • Hiroyoshi Nishikawa

    (Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center
    Nagoya University Graduate School of Medicine)

Abstract

Regulatory T (Treg) cells are important negative regulators of immune homeostasis, but in cancers they tone down the anti-tumor immune response. They are distinguished by high expression levels of the chemokine receptor CCR4, hence their targeting by the anti-CCR4 monoclonal antibody mogamulizumab holds therapeutic promise. Here we show that despite a significant reduction in peripheral effector Treg cells, clinical responses are minimal in a cohort of patients with advanced CCR4-negative solid cancer in a phase Ib study (NCT01929486). Comprehensive immune-monitoring reveals that the abundance of CCR4-expressing central memory CD8+ T cells that are known to play roles in the antitumor immune response is reduced. In long survivors, characterised by lower CCR4 expression in their central memory CD8+ T cells possessed and/or NK cells with an exhausted phenotype, cell numbers are eventually maintained. Our study thus shows that mogamulizumab doses that are currently administered to patients in clinical studies may not differentiate between targeting effector Treg cells and central memory CD8+ T cells, and dosage refinement might be necessary to avoid depletion of effector components during immune therapy.

Suggested Citation

  • Yuka Maeda & Hisashi Wada & Daisuke Sugiyama & Takuro Saito & Takuma Irie & Kota Itahashi & Kodai Minoura & Susumu Suzuki & Takashi Kojima & Kazuhiro Kakimi & Jun Nakajima & Takeru Funakoshi & Shinsuk, 2021. "Depletion of central memory CD8+ T cells might impede the antitumor therapeutic effect of Mogamulizumab," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27574-0
    DOI: 10.1038/s41467-021-27574-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27574-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27574-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Federica Sallusto & Danielle Lenig & Reinhold Förster & Martin Lipp & Antonio Lanzavecchia, 1999. "Two subsets of memory T lymphocytes with distinct homing potentials and effector functions," Nature, Nature, vol. 402(6763), pages 34-38, December.
    2. Federica Sallusto & Danielle Lenig & Reinhold Förster & Martin Lipp & Antonio Lanzavecchia, 1999. "Two subsets of memory T lymphocytes with distinct homing potentials and effector functions," Nature, Nature, vol. 401(6754), pages 708-712, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiyi Zhang & Sidan Tian & Liping Huang & Yanan Li & Yuan Lu & Hongyu Li & Guiping Chen & Fanling Meng & Gang L. Liu & Xiangliang Yang & Jiasheng Tu & Chunmeng Sun & Liang Luo, 2022. "Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune therapy for postsurgical cancer treatment," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Sarah Cappuyns & Gino Philips & Vincent Vandecaveye & Bram Boeckx & Rogier Schepers & Thomas Van Brussel & Ingrid Arijs & Aurelie Mechels & Ayse Bassez & Francesca Lodi & Joris Jaekers & Halit Topal &, 2023. "PD-1- CD45RA+ effector-memory CD8 T cells and CXCL10+ macrophages are associated with response to atezolizumab plus bevacizumab in advanced hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Daan K. J. Pieren & Sebastián G. Kuguel & Joel Rosado & Alba G. Robles & Joan Rey-Cano & Cristina Mancebo & Juliana Esperalba & Vicenç Falcó & María J. Buzón & Meritxell Genescà, 2023. "Limited induction of polyfunctional lung-resident memory T cells against SARS-CoV-2 by mRNA vaccination compared to infection," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Sunil K. Ahuja & Muthu Saravanan Manoharan & Grace C. Lee & Lyle R. McKinnon & Justin A. Meunier & Maristella Steri & Nathan Harper & Edoardo Fiorillo & Alisha M. Smith & Marcos I. Restrepo & Anne P. , 2023. "Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection," Nature Communications, Nature, vol. 14(1), pages 1-31, December.
    5. James M Billingsley & Premeela A Rajakumar & Michelle A Connole & Nadine C Salisch & Sama Adnan & Yury V Kuzmichev & Henoch S Hong & R Keith Reeves & Hyung-joo Kang & Wenjun Li & Qingsheng Li & Ashley, 2015. "Characterization of CD8+ T Cell Differentiation following SIVΔnef Vaccination by Transcription Factor Expression Profiling," PLOS Pathogens, Public Library of Science, vol. 11(3), pages 1-23, March.
    6. Daniel B. Reeves & Charline Bacchus-Souffan & Mark Fitch & Mohamed Abdel-Mohsen & Rebecca Hoh & Haelee Ahn & Mars Stone & Frederick Hecht & Jeffrey Martin & Steven G. Deeks & Marc K. Hellerstein & Jos, 2023. "Estimating the contribution of CD4 T cell subset proliferation and differentiation to HIV persistence," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Nicolas Degauque & Françoise Boeffard & Yohann Foucher & Caroline Ballet & Sophie Brouard & Jean-Paul Soulillou, 2011. "The Blood of Healthy Individuals Exhibits CD8 T Cells with a Highly Altered TCR Vb Repertoire but with an Unmodified Phenotype," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-12, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27574-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.