IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41202-z.html
   My bibliography  Save this article

Exploring non-equilibrium processes and spatio-temporal scaling laws in heated egg yolk using coherent X-rays

Author

Listed:
  • Nimmi Das Anthuparambil

    (Deutsches Elektronen-Synchrotron DESY
    Universität Siegen)

  • Anita Girelli

    (Universität Tübingen)

  • Sonja Timmermann

    (Universität Siegen)

  • Marvin Kowalski

    (Universität Siegen)

  • Mohammad Sayed Akhundzadeh

    (Universität Siegen)

  • Sebastian Retzbach

    (Universität Tübingen)

  • Maximilian D. Senft

    (Universität Tübingen)

  • Michelle Dargasz

    (Universität Siegen)

  • Dennis Gutmüller

    (Universität Tübingen)

  • Anusha Hiremath

    (Universität Tübingen)

  • Marc Moron

    (Technische Universität Dortmund)

  • Özgül Öztürk

    (Universität Siegen)

  • Hanna-Friederike Poggemann

    (Universität Tübingen)

  • Anastasia Ragulskaya

    (Universität Tübingen)

  • Nafisa Begam

    (Universität Tübingen)

  • Amir Tosson

    (Universität Siegen)

  • Michael Paulus

    (Technische Universität Dortmund)

  • Fabian Westermeier

    (Deutsches Elektronen-Synchrotron DESY)

  • Fajun Zhang

    (Universität Tübingen)

  • Michael Sprung

    (Deutsches Elektronen-Synchrotron DESY)

  • Frank Schreiber

    (Universität Tübingen)

  • Christian Gutt

    (Universität Siegen)

Abstract

The soft-grainy microstructure of cooked egg yolk is the result of a series of out-of-equilibrium processes of its protein-lipid contents; however, it is unclear how egg yolk constituents contribute to these processes to create the desired microstructure. By employing X-ray photon correlation spectroscopy, we investigate the functional contribution of egg yolk constituents: proteins, low-density lipoproteins (LDLs), and yolk-granules to the development of grainy-gel microstructure and microscopic dynamics during cooking. We find that the viscosity of the heated egg yolk is solely determined by the degree of protein gelation, whereas the grainy-gel microstructure is controlled by the extent of LDL aggregation. Overall, protein denaturation-aggregation-gelation and LDL-aggregation follows Arrhenius-type time-temperature superposition (TTS), indicating an identical mechanism with a temperature-dependent reaction rate. However, above 75 °C TTS breaks down and temperature-independent gelation dynamics is observed, demonstrating that the temperature can no longer accelerate certain non-equilibrium processes above a threshold value.

Suggested Citation

  • Nimmi Das Anthuparambil & Anita Girelli & Sonja Timmermann & Marvin Kowalski & Mohammad Sayed Akhundzadeh & Sebastian Retzbach & Maximilian D. Senft & Michelle Dargasz & Dennis Gutmüller & Anusha Hire, 2023. "Exploring non-equilibrium processes and spatio-temporal scaling laws in heated egg yolk using coherent X-rays," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41202-z
    DOI: 10.1038/s41467-023-41202-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41202-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41202-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amlan Das & Peter M. Derlet & Chaoyang Liu & Eric M. Dufresne & Robert Maaß, 2019. "Stress breaks universal aging behavior in a metallic glass," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Mario Reiser & Anita Girelli & Anastasia Ragulskaya & Sudipta Das & Sharon Berkowicz & Maddalena Bin & Marjorie Ladd-Parada & Mariia Filianina & Hanna-Friederike Poggemann & Nafisa Begam & Mohammad Sa, 2022. "Resolving molecular diffusion and aggregation of antibody proteins with megahertz X-ray free-electron laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Kresten Lindorff-Larsen & Robert B. Best & Mark A. DePristo & Christopher M. Dobson & Michele Vendruscolo, 2005. "Simultaneous determination of protein structure and dynamics," Nature, Nature, vol. 433(7022), pages 128-132, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy R Lezon & Ivet Bahar, 2010. "Using Entropy Maximization to Understand the Determinants of Structural Dynamics beyond Native Contact Topology," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-12, June.
    2. Anders S Christensen & Troels E Linnet & Mikael Borg & Wouter Boomsma & Kresten Lindorff-Larsen & Thomas Hamelryck & Jan H Jensen, 2013. "Protein Structure Validation and Refinement Using Amide Proton Chemical Shifts Derived from Quantum Mechanics," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-10, December.
    3. Dong Long & Rafael Brüschweiler, 2011. "In Silico Elucidation of the Recognition Dynamics of Ubiquitin," PLOS Computational Biology, Public Library of Science, vol. 7(4), pages 1-9, April.
    4. Kresten Lindorff-Larsen & Jesper Ferkinghoff-Borg, 2009. "Similarity Measures for Protein Ensembles," PLOS ONE, Public Library of Science, vol. 4(1), pages 1-13, January.
    5. Kai Wang & Shiyang Long & Pu Tian, 2015. "Hierarchical Conformational Analysis of Native Lysozyme Based on Sub-Millisecond Molecular Dynamics Simulations," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    6. Gregory D Friedland & Nils-Alexander Lakomek & Christian Griesinger & Jens Meiler & Tanja Kortemme, 2009. "A Correspondence Between Solution-State Dynamics of an Individual Protein and the Sequence and Conformational Diversity of its Family," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-16, May.
    7. Matteo Tiberti & Elena Papaleo & Tone Bengtsen & Wouter Boomsma & Kresten Lindorff-Larsen, 2015. "ENCORE: Software for Quantitative Ensemble Comparison," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-16, October.
    8. Douglas L Theobald & Deborah S Wuttke, 2008. "Accurate Structural Correlations from Maximum Likelihood Superpositions," PLOS Computational Biology, Public Library of Science, vol. 4(2), pages 1-8, February.
    9. Wouter Boomsma & Jesper Ferkinghoff-Borg & Kresten Lindorff-Larsen, 2014. "Combining Experiments and Simulations Using the Maximum Entropy Principle," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-9, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41202-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.