IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41149-1.html
   My bibliography  Save this article

Resonant perovskite solar cells with extended band edge

Author

Listed:
  • Jiangang Feng

    (National University of Singapore
    National University of Singapore)

  • Xi Wang

    (National University of Singapore
    National University of Singapore)

  • Jia Li

    (National University of Singapore
    National University of Singapore)

  • Haoming Liang

    (National University of Singapore
    National University of Singapore)

  • Wen Wen

    (Nanyang Technological University)

  • Ezra Alvianto

    (National University of Singapore
    National University of Singapore)

  • Cheng-Wei Qiu

    (National University of Singapore)

  • Rui Su

    (Nanyang Technological University
    Nanyang Technological University)

  • Yi Hou

    (National University of Singapore
    National University of Singapore)

Abstract

Tuning the composition of perovskites to approach the ideal bandgap raises the single-junction Shockley-Queisser efficiency limit of solar cells. The rapid development of narrow-bandgap formamidinium lead triiodide-based perovskites has brought perovskite single-junction solar cell efficiencies up to 26.1%. However, such compositional engineering route has reached the limit of the Goldschmidt tolerance factor. Here, we experimentally demonstrate a resonant perovskite solar cell that produces giant light absorption at the perovskite band edge with tiny absorption coefficients. We design multiple guide-mode resonances by momentum matching of waveguided modes and free-space light via Brillouin-zone folding, thus achieving an 18-nm band edge extension and 1.5 mA/cm2 improvement of the current. The external quantum efficiency spectrum reaches a plateau of above 93% across the spectral range of ~500 to 800 nm. This resonant nanophotonics strategy translates to a maximum EQE-integrated current of 26.0 mA/cm2 which is comparable to that of the champion single-crystal perovskite solar cell with a thickness of ~20 μm. Our findings break the ray-optics limit and open a new door to improve the efficiency of single-junction perovskite solar cells further when compositional engineering or other carrier managements are close to their limits.

Suggested Citation

  • Jiangang Feng & Xi Wang & Jia Li & Haoming Liang & Wen Wen & Ezra Alvianto & Cheng-Wei Qiu & Rui Su & Yi Hou, 2023. "Resonant perovskite solar cells with extended band edge," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41149-1
    DOI: 10.1038/s41467-023-41149-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41149-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41149-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhaolai Chen & Qingfeng Dong & Ye Liu & Chunxiong Bao & Yanjun Fang & Yun Lin & Shi Tang & Qi Wang & Xun Xiao & Yang Bai & Yehao Deng & Jinsong Huang, 2017. "Thin single crystal perovskite solar cells to harvest below-bandgap light absorption," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    2. Jaewang Park & Jongbeom Kim & Hyun-Sung Yun & Min Jae Paik & Eunseo Noh & Hyun Jung Mun & Min Gyu Kim & Tae Joo Shin & Sang Il Seok, 2023. "Controlled growth of perovskite layers with volatile alkylammonium chlorides," Nature, Nature, vol. 616(7958), pages 724-730, April.
    3. Weijun Ke & Mercouri G. Kanatzidis, 2019. "Prospects for low-toxicity lead-free perovskite solar cells," Nature Communications, Nature, vol. 10(1), pages 1-4, December.
    4. Hanul Min & Do Yoon Lee & Junu Kim & Gwisu Kim & Kyoung Su Lee & Jongbeom Kim & Min Jae Paik & Young Ki Kim & Kwang S. Kim & Min Gyu Kim & Tae Joo Shin & Sang Seok, 2021. "Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes," Nature, Nature, vol. 598(7881), pages 444-450, October.
    5. Inès Massiot & Andrea Cattoni & Stéphane Collin, 2020. "Progress and prospects for ultrathin solar cells," Nature Energy, Nature, vol. 5(12), pages 959-972, December.
    6. Shaun Tan & Tianyi Huang & Ilhan Yavuz & Rui Wang & Tae Woong Yoon & Mingjie Xu & Qiyu Xing & Keonwoo Park & Do-Kyoung Lee & Chung-Hao Chen & Ran Zheng & Taegeun Yoon & Yepin Zhao & Hao-Cheng Wang & D, 2022. "Stability-limiting heterointerfaces of perovskite photovoltaics," Nature, Nature, vol. 605(7909), pages 268-273, May.
    7. Kai Zang & Xiao Jiang & Yijie Huo & Xun Ding & Matthew Morea & Xiaochi Chen & Ching-Ying Lu & Jian Ma & Ming Zhou & Zhenyang Xia & Zongfu Yu & Theodore I. Kamins & Qiang Zhang & James S. Harris, 2017. "Silicon single-photon avalanche diodes with nano-structured light trapping," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    8. Yeoun-Woo Jang & Seungmin Lee & Kyung Mun Yeom & Kiwan Jeong & Kwang Choi & Mansoo Choi & Jun Hong Noh, 2021. "Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth," Nature Energy, Nature, vol. 6(1), pages 63-71, January.
    9. Hung-Ling Chen & Andrea Cattoni & Romaric De Lépinau & Alexandre W. Walker & Oliver Höhn & David Lackner & Gerald Siefer & Marco Faustini & Nicolas Vandamme & Julie Goffard & Benoît Behaghel & Christo, 2019. "A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror," Nature Energy, Nature, vol. 4(9), pages 761-767, September.
    10. Jaeki Jeong & Minjin Kim & Jongdeuk Seo & Haizhou Lu & Paramvir Ahlawat & Aditya Mishra & Yingguo Yang & Michael A. Hope & Felix T. Eickemeyer & Maengsuk Kim & Yung Jin Yoon & In Woo Choi & Barbara Pr, 2021. "Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells," Nature, Nature, vol. 592(7854), pages 381-385, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    2. Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.
    3. Junsheng Luo & Bowen Liu & Haomiao Yin & Xin Zhou & Mingjian Wu & Hongyang Shi & Jiyun Zhang & Jack Elia & Kaicheng Zhang & Jianchang Wu & Zhiqiang Xie & Chao Liu & Junyu Yuan & Zhongquan Wan & Thomas, 2024. "Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Liangliang Min & Haoxuan Sun & Linqi Guo & Meng Wang & Fengren Cao & Jun Zhong & Liang Li, 2024. "Frequency-selective perovskite photodetector for anti-interference optical communications," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Francisca Werlinger & Camilo Segura & Javier Martínez & Igor Osorio-Roman & Danilo Jara & Seog Joon Yoon & Andrés Fabián Gualdrón-Reyes, 2023. "Current Progress of Efficient Active Layers for Organic, Chalcogenide and Perovskite-Based Solar Cells: A Perspective," Energies, MDPI, vol. 16(16), pages 1-35, August.
    6. Dejian Yu & Fei Cao & Jinfeng Liao & Bingzhe Wang & Chenliang Su & Guichuan Xing, 2022. "Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Jin Wen & Yicheng Zhao & Pu Wu & Yuxuan Liu & Xuntian Zheng & Renxing Lin & Sushu Wan & Ke Li & Haowen Luo & Yuxi Tian & Ludong Li & Hairen Tan, 2023. "Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Yuhang Liang & Feng Li & Xiangyuan Cui & Taoyuze Lv & Catherine Stampfl & Simon P. Ringer & Xudong Yang & Jun Huang & Rongkun Zheng, 2024. "Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Fadi Jebali & Atreya Majumdar & Clément Turck & Kamel-Eddine Harabi & Mathieu-Coumba Faye & Eloi Muhr & Jean-Pierre Walder & Oleksandr Bilousov & Amadéo Michaud & Elisa Vianello & Tifenn Hirtzlin & Fr, 2024. "Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Dongdong Xu & Zhiming Gong & Yue Jiang & Yancong Feng & Zhen Wang & Xingsen Gao & Xubing Lu & Guofu Zhou & Jun-Ming Liu & Jinwei Gao, 2022. "Constructing molecular bridge for high-efficiency and stable perovskite solar cells based on P3HT," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Huang, Jianying & Xiang, Huimin & Ran, Ran & Zhou, Wei & Wang, Wei & Shao, Zongping, 2024. "Fundamental understanding in the performance-limiting factors of Cs2AgBiBr6-based perovskite photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Tinghuan Yang & Lili Gao & Jing Lu & Chuang Ma & Yachao Du & Peijun Wang & Zicheng Ding & Shiqiang Wang & Peng Xu & Dongle Liu & Haojin Li & Xiaoming Chang & Junjie Fang & Wenming Tian & Yingguo Yang , 2023. "One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Xinyi Fan & Bojun Wang & Muhammad Quddamah Khokhar & Muhammad Aleem Zahid & Duy Phong Pham & Junsin Yi, 2023. "Real-Time ITO Layer Thickness for Solar Cells Using Deep Learning and Optical Interference Phenomena," Energies, MDPI, vol. 16(16), pages 1-13, August.
    15. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Alessio Bosio & Gianluca Foti & Stefano Pasini & Donato Spoltore, 2023. "A Review on the Fundamental Properties of Sb 2 Se 3 -Based Thin Film Solar Cells," Energies, MDPI, vol. 16(19), pages 1-28, September.
    17. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    18. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    19. Abyl Muradov & Daria Frolushkina & Vadim Samusenkov & Gulsara Zhamanbayeva & Sebastian Kot, 2021. "Methods of Stability Control of Perovskite Solar Cells for High Efficiency," Energies, MDPI, vol. 14(10), pages 1-16, May.
    20. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41149-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.