IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40932-4.html
   My bibliography  Save this article

A synthetic cell-free 36-enzyme reaction system for vitamin B12 production

Author

Listed:
  • Qian Kang

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Huan Fang

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Mengjie Xiang

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Kaixing Xiao

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Pingtao Jiang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Chun You

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Sang Yup Lee

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Dawei Zhang

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

Adenosylcobalamin (AdoCbl), a biologically active form of vitamin B12 (coenzyme B12), is one of the most complex metal-containing natural compounds and an essential vitamin for animals. However, AdoCbl can only be de novo synthesized by prokaryotes, and its industrial manufacturing to date was limited to bacterial fermentation. Here, we report a method for the synthesis of AdoCbl based on a cell-free reaction system performing a cascade of catalytic reactions from 5-aminolevulinic acid (5-ALA), an inexpensive compound. More than 30 biocatalytic reactions are integrated and optimized to achieve the complete cell-free synthesis of AdoCbl, after overcoming feedback inhibition, the complicated detection, instability of intermediate products, as well as imbalance and competition of cofactors. In the end, this cell-free system produces 417.41 μg/L and 5.78 mg/L of AdoCbl using 5-ALA and the purified intermediate product hydrogenobyrate as substrates, respectively. The strategies of coordinating synthetic modules of complex cell-free system describe here will be generally useful for developing cell-free platforms to produce complex natural compounds with long and complicated biosynthetic pathways.

Suggested Citation

  • Qian Kang & Huan Fang & Mengjie Xiang & Kaixing Xiao & Pingtao Jiang & Chun You & Sang Yup Lee & Dawei Zhang, 2023. "A synthetic cell-free 36-enzyme reaction system for vitamin B12 production," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40932-4
    DOI: 10.1038/s41467-023-40932-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40932-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40932-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meaghan A. Valliere & Tyler P. Korman & Nicholas B. Woodall & Gregory A. Khitrov & Robert E. Taylor & David Baker & James U. Bowie, 2019. "A cell-free platform for the prenylation of natural products and application to cannabinoid production," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Tyler P. Korman & Paul H. Opgenorth & James U. Bowie, 2017. "A synthetic biochemistry platform for cell free production of monoterpenes from glucose," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    3. Saken Sherkhanov & Tyler P. Korman & Sum Chan & Salem Faham & Hongjiang Liu & Michael R. Sawaya & Wan-Ting Hsu & Ellee Vikram & Tiffany Cheng & James U. Bowie, 2020. "Isobutanol production freed from biological limits using synthetic biochemistry," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Huan Fang & Dong Li & Jie Kang & Pingtao Jiang & Jibin Sun & Dawei Zhang, 2018. "Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    5. Dario Mizrachi & Yujie Chen & Jiayan Liu & Hwei-Ming Peng & Ailong Ke & Lois Pollack & Raymond J. Turner & Richard J. Auchus & Matthew P. DeLisa, 2015. "Making water-soluble integral membrane proteins in vivo using an amphipathic protein fusion strategy," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    6. Meaghan A. Valliere & Tyler P. Korman & Nicholas B. Woodall & Gregory A. Khitrov & Robert E. Taylor & David Baker & James U. Bowie, 2019. "Author Correction: A cell-free platform for the prenylation of natural products and application to cannabinoid production," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinlei Wei & Xue Yang & Congcong Hu & Qiangzi Li & Qianqian Liu & Yue Wu & Leipeng Xie & Xiao Ning & Fei Li & Tao Cai & Zhiguang Zhu & Yi-Heng P. Job Zhang & Yanfei Zhang & Xuejun Chen & Chun You, 2024. "ATP-free in vitro biotransformation of starch-derived maltodextrin into poly-3-hydroxybutyrate via acetyl-CoA," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Daniela Vergara & Reggie Gaudino & Thomas Blank & Brian Keegan, 2020. "Modeling cannabinoids from a large-scale sample of Cannabis sativa chemotypes," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-17, September.
    3. Linxia Liu & Jinlong Li & Yuanming Gai & Zhizhong Tian & Yanyan Wang & Tenghe Wang & Pi Liu & Qianqian Yuan & Hongwu Ma & Sang Yup Lee & Dawei Zhang, 2023. "Protein engineering and iterative multimodule optimization for vitamin B6 production in Escherichia coli," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Thapakorn Jaroentomeechai & Yong Hyun Kwon & Yiwen Liu & Olivia Young & Ruchika Bhawal & Joshua D. Wilson & Mingji Li & Digantkumar G. Chapla & Kelley W. Moremen & Michael C. Jewett & Dario Mizrachi &, 2022. "A universal glycoenzyme biosynthesis pipeline that enables efficient cell-free remodeling of glycans," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Itai Levin & Mengjie Liu & Christopher A. Voigt & Connor W. Coley, 2022. "Merging enzymatic and synthetic chemistry with computational synthesis planning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Alicia E. Graham & Rodrigo Ledesma-Amaro, 2023. "The microbial food revolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Kevin B. Weyant & Ayomide Oloyede & Sukumar Pal & Julie Liao & Mariela Rivera-De Jesus & Thapakorn Jaroentomeechai & Tyler D. Moeller & Steven Hoang-Phou & Sean F. Gilmore & Riya Singh & Daniel C. Pan, 2023. "A modular vaccine platform enabled by decoration of bacterial outer membrane vesicles with biotinylated antigens," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40932-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.