IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39569-0.html
   My bibliography  Save this article

High body temperature increases gut microbiota-dependent host resistance to influenza A virus and SARS-CoV-2 infection

Author

Listed:
  • Minami Nagai

    (The University of Tokyo)

  • Miyu Moriyama

    (The University of Tokyo)

  • Chiharu Ishii

    (Keio University)

  • Hirotake Mori

    (Juntendo University Faculty of Medicine)

  • Hikaru Watanabe

    (Metagen Therapeutics, Inc.)

  • Taku Nakahara

    (Metagen Therapeutics, Inc.)

  • Takuji Yamada

    (Metagen Therapeutics, Inc.
    Tokyo Institute of Technology)

  • Dai Ishikawa

    (Metagen Therapeutics, Inc.
    Juntendo University Graduate School of Medicine
    Juntendo University Faculty of Medicine)

  • Takamasa Ishikawa

    (Keio University)

  • Akiyoshi Hirayama

    (Keio University)

  • Ikuo Kimura

    (Kyoto University
    Tokyo University of Agriculture and Technology)

  • Akihito Nagahara

    (Juntendo University Graduate School of Medicine
    Juntendo University Faculty of Medicine)

  • Toshio Naito

    (Juntendo University Faculty of Medicine)

  • Shinji Fukuda

    (Keio University
    Metagen Therapeutics, Inc.
    Juntendo University Graduate School of Medicine
    Kanagawa Institute of Industrial Science and Technology)

  • Takeshi Ichinohe

    (The University of Tokyo)

Abstract

Fever is a common symptom of influenza and coronavirus disease 2019 (COVID-19), yet its physiological role in host resistance to viral infection remains less clear. Here, we demonstrate that exposure of mice to the high ambient temperature of 36 °C increases host resistance to viral pathogens including influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). High heat-exposed mice increase basal body temperature over 38 °C to enable more bile acids production in a gut microbiota-dependent manner. The gut microbiota-derived deoxycholic acid (DCA) and its plasma membrane-bound receptor Takeda G-protein-coupled receptor 5 (TGR5) signaling increase host resistance to influenza virus infection by suppressing virus replication and neutrophil-dependent tissue damage. Furthermore, the DCA and its nuclear farnesoid X receptor (FXR) agonist protect Syrian hamsters from lethal SARS-CoV-2 infection. Moreover, we demonstrate that certain bile acids are reduced in the plasma of COVID-19 patients who develop moderate I/II disease compared with the minor severity of illness group. These findings implicate a mechanism by which virus-induced high fever increases host resistance to influenza virus and SARS-CoV-2 in a gut microbiota-dependent manner.

Suggested Citation

  • Minami Nagai & Miyu Moriyama & Chiharu Ishii & Hirotake Mori & Hikaru Watanabe & Taku Nakahara & Takuji Yamada & Dai Ishikawa & Takamasa Ishikawa & Akiyoshi Hirayama & Ikuo Kimura & Akihito Nagahara &, 2023. "High body temperature increases gut microbiota-dependent host resistance to influenza A virus and SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39569-0
    DOI: 10.1038/s41467-023-39569-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39569-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39569-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yukihiro Furusawa & Yuuki Obata & Shinji Fukuda & Takaho A. Endo & Gaku Nakato & Daisuke Takahashi & Yumiko Nakanishi & Chikako Uetake & Keiko Kato & Tamotsu Kato & Masumi Takahashi & Noriko N. Fukuda, 2013. "Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells," Nature, Nature, vol. 504(7480), pages 446-450, December.
    2. Carolina Lucas & Patrick Wong & Jon Klein & Tiago B. R. Castro & Julio Silva & Maria Sundaram & Mallory K. Ellingson & Tianyang Mao & Ji Eun Oh & Benjamin Israelow & Takehiro Takahashi & Maria Tokuyam, 2020. "Longitudinal analyses reveal immunological misfiring in severe COVID-19," Nature, Nature, vol. 584(7821), pages 463-469, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalia Di Tommaso & Antonio Gasbarrini & Francesca Romana Ponziani, 2021. "Intestinal Barrier in Human Health and Disease," IJERPH, MDPI, vol. 18(23), pages 1-23, December.
    2. Shelly J. Robertson & Olivia Bedard & Kristin L. McNally & Carl Shaia & Chad S. Clancy & Matthew Lewis & Rebecca M. Broeckel & Abhilash I. Chiramel & Jeffrey G. Shannon & Gail L. Sturdevant & Rebecca , 2023. "Genetically diverse mouse models of SARS-CoV-2 infection reproduce clinical variation in type I interferon and cytokine responses in COVID-19," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Junling Niu & Mengmeng Cui & Xin Yang & Juan Li & Yuhui Yao & Qiuhong Guo & Ailing Lu & Xiaopeng Qi & Dongming Zhou & Chenhong Zhang & Liping Zhao & Guangxun Meng, 2023. "Microbiota-derived acetate enhances host antiviral response via NLRP3," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Kim McFann & Bridget A. Baxter & Stephanie M. LaVergne & Sophia Stromberg & Kailey Berry & Madison Tipton & Jared Haberman & Jeremy Ladd & Tracy L. Webb & Julie A. Dunn & Elizabeth P. Ryan, 2021. "Quality of Life (QoL) Is Reduced in Those with Severe COVID-19 Disease, Post-Acute Sequelae of COVID-19, and Hospitalization in United States Adults from Northern Colorado," IJERPH, MDPI, vol. 18(21), pages 1-9, October.
    5. Kamila Gorczyca & Aleksandra Obuchowska & Żaneta Kimber-Trojnar & Magdalena Wierzchowska-Opoka & Bożena Leszczyńska-Gorzelak, 2022. "Changes in the Gut Microbiome and Pathologies in Pregnancy," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    6. Todd D. Terhune & Richard C. Deth, 2018. "Aluminum Adjuvant-Containing Vaccines in the Context of the Hygiene Hypothesis: A Risk Factor for Eosinophilia and Allergy in a Genetically Susceptible Subpopulation?," IJERPH, MDPI, vol. 15(5), pages 1-16, May.
    7. Natsuko Tabata & Mai Tsukada & Kozue Kubo & Yuri Inoue & Reiko Miroku & Fumihiko Odashima & Koichiro Shiratori & Takashi Sekiya & Shintaro Sengoku & Hideaki Shiroyama & Hiromichi Kimura, 2022. "Living Lab for Citizens’ Wellness: A Case of Maintaining and Improving a Healthy Diet under the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    8. Tiago Fazolo & Karina Lima & Julia C. Fontoura & Priscila Oliveira Souza & Gabriel Hilario & Renata Zorzetto & Luiz Rodrigues Júnior & Veridiane Maria Pscheidt & Jayme Castilhos Ferreira Neto & Alisso, 2021. "Pediatric COVID-19 patients in South Brazil show abundant viral mRNA and strong specific anti-viral responses," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Fábio Santos Lira & Telmo Pereira & Luciele Guerra Minuzzi & Caique Figueiredo & Tiago Olean-Oliveira & Ana Paula Coelho Figueira Freire & Manuel João Coelho-e-Silva & Armando Caseiro & Ronaldo Vagner, 2021. "Modulatory Effects of Physical Activity Levels on Immune Responses and General Clinical Functions in Adult Patients with Mild to Moderate SARS-CoV-2 Infections—A Protocol for an Observational Prospect," IJERPH, MDPI, vol. 18(24), pages 1-13, December.
    10. Lucie Bernard-Raichon & Mericien Venzon & Jon Klein & Jordan E. Axelrad & Chenzhen Zhang & Alexis P. Sullivan & Grant A. Hussey & Arnau Casanovas-Massana & Maria G. Noval & Ana M. Valero-Jimenez & Jua, 2022. "Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Felipe Papa Pellizoni & Aline Zazeri Leite & Nathália de Campos Rodrigues & Marcelo Jordão Ubaiz & Marina Ignácio Gonzaga & Nauyta Naomi Campos Takaoka & Vânia Sammartino Mariano & Wellington Pine Omo, 2021. "Detection of Dysbiosis and Increased Intestinal Permeability in Brazilian Patients with Relapsing–Remitting Multiple Sclerosis," IJERPH, MDPI, vol. 18(9), pages 1-17, April.
    12. Hung-Chih Chen & Yen-Wen Liu & Kuan-Cheng Chang & Yen-Wen Wu & Yi-Ming Chen & Yu-Kai Chao & Min-Yi You & David J. Lundy & Chen-Ju Lin & Marvin L. Hsieh & Yu-Che Cheng & Ray P. Prajnamitra & Po-Ju Lin , 2023. "Gut butyrate-producers confer post-infarction cardiac protection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Changli Wei & Prasun K. Datta & Florian Siegerist & Jing Li & Sudhini Yashwanth & Kwi Hye Koh & Nicholas W. Kriho & Anis Ismail & Shengyuan Luo & Tracy Fischer & Kyle T. Amber & David Cimbaluk & Alan , 2023. "SuPAR mediates viral response proteinuria by rapidly changing podocyte function," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Nikaïa Smith & Céline Possémé & Vincent Bondet & Jamie Sugrue & Liam Townsend & Bruno Charbit & Vincent Rouilly & Violaine Saint-André & Tom Dott & Andre Rodriguez Pozo & Nader Yatim & Olivier Schwart, 2022. "Defective activation and regulation of type I interferon immunity is associated with increasing COVID-19 severity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Yanan Zhang & Shuyu Tu & Xingwei Ji & Jianan Wu & Jinxin Meng & Jinsong Gao & Xian Shao & Shuai Shi & Gan Wang & Jingjing Qiu & Zhuobiao Zhang & Chengang Hua & Ziyi Zhang & Shuxian Chen & Li Zhang & S, 2024. "Dubosiella newyorkensis modulates immune tolerance in colitis via the L-lysine-activated AhR-IDO1-Kyn pathway," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. Quy Xiao Xuan Lin & Deepa Rajagopalan & Akshamal M. Gamage & Le Min Tan & Prasanna Nori Venkatesh & Wharton O. Y. Chan & Dilip Kumar & Ragini Agrawal & Yao Chen & Siew-Wai Fong & Amit Singh & Louisa J, 2024. "Longitudinal single cell atlas identifies complex temporal relationship between type I interferon response and COVID-19 severity," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Lei Zhu & Xingxing Jian & Bingjing Zhou & Runqiu Liu & Melba Muñoz & Wan Sun & Lu Xie & Xiang Chen & Cong Peng & Marcus Maurer & Jie Li, 2024. "Gut microbiota facilitate chronic spontaneous urticaria," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Koji Hosomi & Mayu Saito & Jonguk Park & Haruka Murakami & Naoko Shibata & Masahiro Ando & Takahiro Nagatake & Kana Konishi & Harumi Ohno & Kumpei Tanisawa & Attayeb Mohsen & Yi-An Chen & Hitoshi Kawa, 2022. "Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Wei Feng & Joanne C. Beer & Qinyu Hao & Ishara S. Ariyapala & Aparna Sahajan & Andrei Komarov & Katie Cha & Mason Moua & Xiaolei Qiu & Xiaomei Xu & Shweta Iyengar & Thu Yoshimura & Rajini Nagaraj & Li, 2023. "NULISA: a proteomic liquid biopsy platform with attomolar sensitivity and high multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Alba Ordoñez-Rodriguez & Pablo Roman & Lola Rueda-Ruzafa & Ana Campos-Rios & Diana Cardona, 2023. "Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review," IJERPH, MDPI, vol. 20(5), pages 1-16, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39569-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.