IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39541-y.html
   My bibliography  Save this article

Designing main-group catalysts for low-temperature methane combustion by ozone

Author

Listed:
  • Shunsaku Yasumura

    (Hokkaido University)

  • Kenichiro Saita

    (Hokkaido University)

  • Takumi Miyakage

    (Hokkaido University)

  • Ken Nagai

    (Hokkaido University)

  • Kenichi Kon

    (Hokkaido University)

  • Takashi Toyao

    (Hokkaido University)

  • Zen Maeno

    (Kogakuin University)

  • Tetsuya Taketsugu

    (Hokkaido University
    Hokkaido University)

  • Ken-ichi Shimizu

    (Hokkaido University)

Abstract

The catalytic combustion of methane at a low temperature is becoming increasingly key to controlling unburned CH4 emissions from natural gas vehicles and power plants, although the low activity of benchmark platinum-group-metal catalysts hinders its broad application. Based on automated reaction route mapping, we explore main-group elements catalysts containing Si and Al for low-temperature CH4 combustion with ozone. Computational screening of the active site predicts that strong Brønsted acid sites are promising for methane combustion. We experimentally demonstrate that catalysts containing strong Bronsted acid sites exhibit improved CH4 conversion at 250 °C, correlating with the theoretical predictions. The main-group catalyst (proton-type beta zeolite) delivered a reaction rate that is 442 times higher than that of a benchmark catalyst (5 wt% Pd-loaded Al2O3) at 190 °C and exhibits higher tolerance to steam and SO2. Our strategy demonstrates the rational design of earth-abundant catalysts based on automated reaction route mapping.

Suggested Citation

  • Shunsaku Yasumura & Kenichiro Saita & Takumi Miyakage & Ken Nagai & Kenichi Kon & Takashi Toyao & Zen Maeno & Tetsuya Taketsugu & Ken-ichi Shimizu, 2023. "Designing main-group catalysts for low-temperature methane combustion by ozone," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39541-y
    DOI: 10.1038/s41467-023-39541-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39541-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39541-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sina Stocker & Gábor Csányi & Karsten Reuter & Johannes T. Margraf, 2020. "Machine learning in chemical reaction space," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Andrey W. Petrov & Davide Ferri & Frank Krumeich & Maarten Nachtegaal & Jeroen A. van Bokhoven & Oliver Kröcher, 2018. "Stable complete methane oxidation over palladium based zeolite catalysts," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Zachary W. Ulissi & Andrew J. Medford & Thomas Bligaard & Jens K. Nørskov, 2017. "To address surface reaction network complexity using scaling relations machine learning and DFT calculations," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    4. He, Li & Fan, Yilin & Bellettre, Jérôme & Yue, Jun & Luo, Lingai, 2020. "A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namazi, Mohammadmehdi & Nayebi, Mohammadreza & Isazadeh, Amin & Modarresi, Ali & Marzbali, Iman Ghasemi & Hosseinalipour, Seyed Mostafa, 2022. "Experimental and numerical study of catalytic combustion and pore-scale numerical study of mass diffusion in high porosity fibrous porous media," Energy, Elsevier, vol. 238(PB).
    2. Gang Wang & Shinya Mine & Duotian Chen & Yuan Jing & Kah Wei Ting & Taichi Yamaguchi & Motoshi Takao & Zen Maeno & Ichigaku Takigawa & Koichi Matsushita & Ken-ichi Shimizu & Takashi Toyao, 2023. "Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    4. Qin, Mingyuan & Chew, Bee Teng & Yau, Yat Huang & Wang, Xinru & Wang, Chunqing & Luo, Xueqing & Li, Lei & Pan, Song, 2023. "Emergency heater based on gas-fired catalytic combustion infrared technology: Structure, evaluation and thermal response," Energy, Elsevier, vol. 274(C).
    5. Núria. J. Divins & Andrea Braga & Xavier Vendrell & Isabel Serrano & Xènia Garcia & Lluís Soler & Ilaria Lucentini & Maila Danielis & Andrea Mussio & Sara Colussi & Ignacio J. Villar-Garcia & Carlos E, 2022. "Investigation of the evolution of Pd-Pt supported on ceria for dry and wet methane oxidation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. He, Li & Fan, Yilin & Bellettre, Jérôme & Yue, Jun & Luo, Lingai, 2020. "A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Khademi, Mohammad Hasan & Alipour-Dehkordi, Afshar & Nalchifard, Fereshteh, 2023. "Sustainable hydrogen and syngas production from waste valorization of biodiesel synthesis by-product: Green chemistry approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    9. Philipp Keller & Michael A. Reiter & Patrick Kiefer & Thomas Gassler & Lucas Hemmerle & Philipp Christen & Elad Noor & Julia A. Vorholt, 2022. "Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Damilola Ologunagba & Shyam Kattel, 2020. "Machine Learning Prediction of Surface Segregation Energies on Low Index Bimetallic Surfaces," Energies, MDPI, vol. 13(9), pages 1-13, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39541-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.