IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39430-4.html
   My bibliography  Save this article

A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface

Author

Listed:
  • Rui Yuan

    (Peking University)

  • Pek Jun Tiw

    (Peking University)

  • Lei Cai

    (Peking University)

  • Zhiyu Yang

    (Peking University)

  • Chang Liu

    (Peking University)

  • Teng Zhang

    (Peking University)

  • Chen Ge

    (Chinese Academy of Sciences)

  • Ru Huang

    (Peking University)

  • Yuchao Yang

    (Peking University
    Peking University
    Peking University
    Chinese Institute for Brain Research (CIBR), Beijing)

Abstract

Physiological signal processing plays a key role in next-generation human-machine interfaces as physiological signals provide rich cognition- and health-related information. However, the explosion of physiological signal data presents challenges for traditional systems. Here, we propose a highly efficient neuromorphic physiological signal processing system based on VO2 memristors. The volatile and positive/negative symmetric threshold switching characteristics of VO2 memristors are leveraged to construct a sparse-spiking yet high-fidelity asynchronous spike encoder for physiological signals. Besides, the dynamical behavior of VO2 memristors is utilized in compact Leaky Integrate and Fire (LIF) and Adaptive-LIF (ALIF) neurons, which are incorporated into a decision-making Long short-term memory Spiking Neural Network. The system demonstrates superior computing capabilities, needing only small-sized LSNNs to attain high accuracies of 95.83% and 99.79% in arrhythmia classification and epileptic seizure detection, respectively. This work highlights the potential of memristors in constructing efficient neuromorphic physiological signal processing systems and promoting next-generation human-machine interfaces.

Suggested Citation

  • Rui Yuan & Pek Jun Tiw & Lei Cai & Zhiyu Yang & Chang Liu & Teng Zhang & Chen Ge & Ru Huang & Yuchao Yang, 2023. "A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39430-4
    DOI: 10.1038/s41467-023-39430-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39430-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39430-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rui Yuan & Qingxi Duan & Pek Jun Tiw & Ge Li & Zhuojian Xiao & Zhaokun Jing & Ke Yang & Chang Liu & Chen Ge & Ru Huang & Yuchao Yang, 2022. "A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Sourav Dutta & Abhinav Parihar & Abhishek Khanna & Jorge Gomez & Wriddhi Chakraborty & Matthew Jerry & Benjamin Grisafe & Arijit Raychowdhury & Suman Datta, 2019. "Programmable coupled oscillators for synchronized locomotion," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Wei Yi & Kenneth K. Tsang & Stephen K. Lam & Xiwei Bai & Jack A. Crowell & Elias A. Flores, 2018. "Biological plausibility and stochasticity in scalable VO2 active memristor neurons," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Mohammadali Sharifshazileh & Karla Burelo & Johannes Sarnthein & Giacomo Indiveri, 2021. "An electronic neuromorphic system for real-time detection of high frequency oscillations (HFO) in intracranial EEG," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Qingxi Duan & Zhaokun Jing & Xiaolong Zou & Yanghao Wang & Ke Yang & Teng Zhang & Si Wu & Ru Huang & Yuchao Yang, 2020. "Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    6. Yuchao Yang & Peng Gao & Linze Li & Xiaoqing Pan & Stefan Tappertzhofen & ShinHyun Choi & Rainer Waser & Ilia Valov & Wei D. Lu, 2014. "Electrochemical dynamics of nanoscale metallic inclusions in dielectrics," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    7. Yuchao Yang & Xiaoxian Zhang & Liang Qin & Qibin Zeng & Xiaohui Qiu & Ru Huang, 2017. "Probing nanoscale oxygen ion motion in memristive systems," Nature Communications, Nature, vol. 8(1), pages 1-10, August.
    8. Ahmed Shaban & Sai Sukruth Bezugam & Manan Suri, 2021. "An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang Liu & Pek Jun Tiw & Teng Zhang & Yanghao Wang & Lei Cai & Rui Yuan & Zelun Pan & Wenshuo Yue & Yaoyu Tao & Yuchao Yang, 2024. "VO2 memristor-based frequency converter with in-situ synthesize and mix for wireless internet-of-things," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang Liu & Pek Jun Tiw & Teng Zhang & Yanghao Wang & Lei Cai & Rui Yuan & Zelun Pan & Wenshuo Yue & Yaoyu Tao & Yuchao Yang, 2024. "VO2 memristor-based frequency converter with in-situ synthesize and mix for wireless internet-of-things," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Rui Yuan & Qingxi Duan & Pek Jun Tiw & Ge Li & Zhuojian Xiao & Zhaokun Jing & Ke Yang & Chang Liu & Chen Ge & Ru Huang & Yuchao Yang, 2022. "A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Ying Zhang & Ge-Qi Mao & Xiaolong Zhao & Yu Li & Meiyun Zhang & Zuheng Wu & Wei Wu & Huajun Sun & Yizhong Guo & Lihua Wang & Xumeng Zhang & Qi Liu & Hangbing Lv & Kan-Hao Xue & Guangwei Xu & Xiangshui, 2021. "Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. See-On Park & Hakcheon Jeong & Jongyong Park & Jongmin Bae & Shinhyun Choi, 2022. "Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Ui Yeon Won & Quoc An Vu & Sung Bum Park & Mi Hyang Park & Van Dam Do & Hyun Jun Park & Heejun Yang & Young Hee Lee & Woo Jong Yu, 2023. "Multi-neuron connection using multi-terminal floating–gate memristor for unsupervised learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Konlechner, Roland & Allagui, Anis & Antonov, Vladimir N. & Yudin, Dmitry, 2023. "A superstatistics approach to the modelling of memristor current–voltage responses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    10. Milad Shafiee & Guillaume Bellegarda & Auke Ijspeert, 2024. "Viability leads to the emergence of gait transitions in learning agile quadrupedal locomotion on challenging terrains," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Kafraj, Mohadeseh Shafiei & Parastesh, Fatemeh & Jafari, Sajad, 2020. "Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    12. Jaehyun Kang & Taeyoon Kim & Suman Hu & Jaewook Kim & Joon Young Kwak & Jongkil Park & Jong Keuk Park & Inho Kim & Suyoun Lee & Sangbum Kim & YeonJoo Jeong, 2022. "Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Liying Xu & Jiadi Zhu & Bing Chen & Zhen Yang & Keqin Liu & Bingjie Dang & Teng Zhang & Yuchao Yang & Ru Huang, 2022. "A distributed nanocluster based multi-agent evolutionary network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Ushakov, Yury & Balanov, Alexander & Savel’ev, Sergey, 2021. "Role of noise in spiking dynamics of diffusive memristor driven by heating-cooling cycles," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Xingan Jiang & Xueyun Wang & Xiaolei Wang & Xiangping Zhang & Ruirui Niu & Jianming Deng & Sheng Xu & Yingzhuo Lun & Yanyu Liu & Tianlong Xia & Jianming Lu & Jiawang Hong, 2022. "Manipulation of current rectification in van der Waals ferroionic CuInP2S6," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Zhou, Wei & Jin, Peipei & Dong, Yujiao & Liang, Yan & Wang, Guangyi, 2023. "Memristor neurons and their coupling networks based on Edge of Chaos Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    18. Li, Xing & Zou, Jianxun & Feng, Zhe & Wu, Zuheng & Xu, Zuyu & Yang, Fei & Zhu, Yunlai & Dai, Yuehua, 2023. "Thermal design engineering for improving the variation of memristor threshold," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Xi Zhou & Liang Zhao & Chu Yan & Weili Zhen & Yinyue Lin & Le Li & Guanlin Du & Linfeng Lu & Shan-Ting Zhang & Zhichao Lu & Dongdong Li, 2023. "Thermally stable threshold selector based on CuAg alloy for energy-efficient memory and neuromorphic computing applications," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Muhtasim Ul Karim Sadaf & Najam U Sakib & Andrew Pannone & Harikrishnan Ravichandran & Saptarshi Das, 2023. "A bio-inspired visuotactile neuron for multisensory integration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39430-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.