IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v614y2023ics0378437123001103.html
   My bibliography  Save this article

A superstatistics approach to the modelling of memristor current–voltage responses

Author

Listed:
  • Konlechner, Roland
  • Allagui, Anis
  • Antonov, Vladimir N.
  • Yudin, Dmitry

Abstract

Memristors are expected to form a major cornerstone in the upcoming renaissance of analog computing, owing to their very small spatial footprint and low power consumption. Due to the nature of their structure and operation, the response of a memristor is intrinsically tied to local variabilities in the device. This characteristic is amplified by currently employed semiconductor fabrication processes, which introduce spatial inhomogeneities into the structural fabric that makes up the layers of memristors. In this work, we propose a novel q-deformed current–voltage model for memristors based on the superstatistics framework, which allows the description of system-level responses while taking local variabilities into account. Applied on a Ag–Cu based synaptic memory cell, we demonstrate that our model has a 4%–14% lower error than currently used models. Additionally, we show how the resulting q-parameter can be used to make statements about the internal makeup of the memristor, giving insights to spatial inhomogeneities and quality control.

Suggested Citation

  • Konlechner, Roland & Allagui, Anis & Antonov, Vladimir N. & Yudin, Dmitry, 2023. "A superstatistics approach to the modelling of memristor current–voltage responses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
  • Handle: RePEc:eee:phsmap:v:614:y:2023:i:c:s0378437123001103
    DOI: 10.1016/j.physa.2023.128555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123001103
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei Wang & Ming Wang & Elia Ambrosi & Alessandro Bricalli & Mario Laudato & Zhong Sun & Xiaodong Chen & Daniele Ielmini, 2019. "Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    3. Benjamin Schäfer & Christian Beck & Kazuyuki Aihara & Dirk Witthaut & Marc Timme, 2018. "Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics," Nature Energy, Nature, vol. 3(2), pages 119-126, February.
    4. Yuchao Yang & Peng Gao & Linze Li & Xiaoqing Pan & Stefan Tappertzhofen & ShinHyun Choi & Rainer Waser & Ilia Valov & Wei D. Lu, 2014. "Electrochemical dynamics of nanoscale metallic inclusions in dielectrics," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    5. Wen Sun & Bin Gao & Miaofang Chi & Qiangfei Xia & J. Joshua Yang & He Qian & Huaqiang Wu, 2019. "Understanding memristive switching via in situ characterization and device modeling," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Kwon, Osung & Kim, Sungjun & Agudov, Nikolay & Krichigin, Alexey & Mikhaylov, Alexey & Grimaudo, Roberto & Valenti, Davide & Spagnolo, Bernardo, 2022. "Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic device with a crossbar array structure," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Jaehyun Kang & Taeyoon Kim & Suman Hu & Jaewook Kim & Joon Young Kwak & Jongkil Park & Jong Keuk Park & Inho Kim & Suyoun Lee & Sangbum Kim & YeonJoo Jeong, 2022. "Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Bassem Tossoun & Di Liang & Stanley Cheung & Zhuoran Fang & Xia Sheng & John Paul Strachan & Raymond G. Beausoleil, 2024. "High-speed and energy-efficient non-volatile silicon photonic memory based on heterogeneously integrated memresonator," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Liying Xu & Jiadi Zhu & Bing Chen & Zhen Yang & Keqin Liu & Bingjie Dang & Teng Zhang & Yuchao Yang & Ru Huang, 2022. "A distributed nanocluster based multi-agent evolutionary network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Ying Zhang & Ge-Qi Mao & Xiaolong Zhao & Yu Li & Meiyun Zhang & Zuheng Wu & Wei Wu & Huajun Sun & Yizhong Guo & Lihua Wang & Xumeng Zhang & Qi Liu & Hangbing Lv & Kan-Hao Xue & Guangwei Xu & Xiangshui, 2021. "Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Yan Wang & Yue Gong & Shenming Huang & Xuechao Xing & Ziyu Lv & Junjie Wang & Jia-Qin Yang & Guohua Zhang & Ye Zhou & Su-Ting Han, 2021. "Memristor-based biomimetic compound eye for real-time collision detection," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Mahata, Chandreswar & Kim, Sungjun, 2021. "Electrical and optical artificial synapses properties of TiN-nanoparticles incorporated HfAlO-alloy based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    9. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. S. S. Teja Nibhanupudi & Anupam Roy & Dmitry Veksler & Matthew Coupin & Kevin C. Matthews & Matthew Disiena & Ansh & Jatin V. Singh & Ioana R. Gearba-Dolocan & Jamie Warner & Jaydeep P. Kulkarni & Gen, 2024. "Ultra-fast switching memristors based on two-dimensional materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    12. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    14. Qin, Xiaoli & Wang, Cong & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Ye, Lu, 2018. "Finite-time modified projective synchronization of memristor-based neural network with multi-links and leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 302-315.
    15. Ui Yeon Won & Quoc An Vu & Sung Bum Park & Mi Hyang Park & Van Dam Do & Hyun Jun Park & Heejun Yang & Young Hee Lee & Woo Jong Yu, 2023. "Multi-neuron connection using multi-terminal floating–gate memristor for unsupervised learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    17. Liu, Yunfeng & Song, Zhiqiang & Tan, Manchun, 2019. "Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 1-17.
    18. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Ma, Xujiong & Mou, Jun & Xiong, Li & Banerjee, Santo & Cao, Yinghong & Wang, Jieyang, 2021. "A novel chaotic circuit with coexistence of multiple attractors and state transition based on two memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Aguilera-Morillo, M. Carmen & Aguilera, Ana M. & Jiménez-Molinos, Francisco & Roldán, Juan B., 2019. "Stochastic modeling of Random Access Memories reset transitions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 197-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:614:y:2023:i:c:s0378437123001103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.