IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39076-2.html
   My bibliography  Save this article

Waves traveling over a map of visual space can ignite short-term predictions of sensory input

Author

Listed:
  • Gabriel B. Benigno

    (Western University
    Western University
    Western University)

  • Roberto C. Budzinski

    (Western University
    Western University
    Western University)

  • Zachary W. Davis

    (The Salk Institute for Biological Studies)

  • John H. Reynolds

    (The Salk Institute for Biological Studies)

  • Lyle Muller

    (Western University
    Western University
    Western University)

Abstract

Recent analyses have found waves of neural activity traveling across entire visual cortical areas in awake animals. These traveling waves modulate the excitability of local networks and perceptual sensitivity. The general computational role of these spatiotemporal patterns in the visual system, however, remains unclear. Here, we hypothesize that traveling waves endow the visual system with the capacity to predict complex and naturalistic inputs. We present a network model whose connections can be rapidly and efficiently trained to predict individual natural movies. After training, a few input frames from a movie trigger complex wave patterns that drive accurate predictions many frames into the future solely from the network’s connections. When the recurrent connections that drive waves are randomly shuffled, both traveling waves and the ability to predict are eliminated. These results suggest traveling waves may play an essential computational role in the visual system by embedding continuous spatiotemporal structures over spatial maps.

Suggested Citation

  • Gabriel B. Benigno & Roberto C. Budzinski & Zachary W. Davis & John H. Reynolds & Lyle Muller, 2023. "Waves traveling over a map of visual space can ignite short-term predictions of sensory input," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39076-2
    DOI: 10.1038/s41467-023-39076-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39076-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39076-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lyle Muller & Alexandre Reynaud & Frédéric Chavane & Alain Destexhe, 2014. "The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave," Nature Communications, Nature, vol. 5(1), pages 1-14, May.
    2. Aidan J. Horner & James A. Bisby & Daniel Bush & Wen-Jing Lin & Neil Burgess, 2015. "Evidence for holistic episodic recollection via hippocampal pattern completion," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    3. Zachary W. Davis & Lyle Muller & Julio Martinez-Trujillo & Terrence Sejnowski & John H. Reynolds, 2020. "Spontaneous travelling cortical waves gate perception in behaving primates," Nature, Nature, vol. 587(7834), pages 432-436, November.
    4. Zachary W. Davis & Gabriel B. Benigno & Charlee Fletterman & Theo Desbordes & Christopher Steward & Terrence J. Sejnowski & John Reynolds & Lyle Muller, 2021. "Spontaneous traveling waves naturally emerge from horizontal fiber time delays and travel through locally asynchronous-irregular states," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Adeeti Aggarwal & Connor Brennan & Jennifer Luo & Helen Chung & Diego Contreras & Max B. Kelz & Alex Proekt, 2022. "Visual evoked feedforward–feedback traveling waves organize neural activity across the cortical hierarchy in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Evan S Schaffer & Srdjan Ostojic & L F Abbott, 2013. "A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-11, October.
    7. Kazutaka Takahashi & Sanggyun Kim & Todd P. Coleman & Kevin A. Brown & Aaron J. Suminski & Matthew D. Best & Nicholas G. Hatsopoulos, 2015. "Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik P. Koller & Michael Schirner & Petra Ritter, 2024. "Human connectome topology directs cortical traveling waves and shapes frequency gradients," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Erfan Zabeh & Nicholas C. Foley & Joshua Jacobs & Jacqueline P. Gottlieb, 2023. "Beta traveling waves in monkey frontal and parietal areas encode recent reward history," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Adeeti Aggarwal & Connor Brennan & Jennifer Luo & Helen Chung & Diego Contreras & Max B. Kelz & Alex Proekt, 2022. "Visual evoked feedforward–feedback traveling waves organize neural activity across the cortical hierarchy in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Georgios Spyropoulos & Matteo Saponati & Jarrod Robert Dowdall & Marieke Louise Schölvinck & Conrado Arturo Bosman & Bruss Lima & Alina Peter & Irene Onorato & Johanna Klon-Lipok & Rasmus Roese & Serg, 2022. "Spontaneous variability in gamma dynamics described by a damped harmonic oscillator driven by noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Li Zheng & Zhiyao Gao & Andrew S. McAvan & Eve A. Isham & Arne D. Ekstrom, 2021. "Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. James Rankin & Frédéric Chavane, 2017. "Neural field model to reconcile structure with function in primary visual cortex," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-30, October.
    7. Yifan Gu & Yang Qi & Pulin Gong, 2019. "Rich-club connectivity, diverse population coupling, and dynamical activity patterns emerging from local cortical circuits," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-34, April.
    8. Patrick Jendritza & Frederike J. Klein & Pascal Fries, 2023. "Multi-area recordings and optogenetics in the awake, behaving marmoset," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. David M Alexander & Tonio Ball & Andreas Schulze-Bonhage & Cees van Leeuwen, 2019. "Large-scale cortical travelling waves predict localized future cortical signals," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-34, November.
    10. Baer, Naomi & Barry, Erica & Smith, Gary, 2020. "The name game: The importance of resourcefulness, ruses, and recall in stock ticker symbols," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 410-413.
    11. Rory G Townsend & Pulin Gong, 2018. "Detection and analysis of spatiotemporal patterns in brain activity," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-29, December.
    12. Zhongyu Hu & Wenxi Zhou & Jiongjiong Yang, 2021. "The effect of encoding task on the forgetting of object gist and details," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-26, September.
    13. Fraser Aitken & Peter Kok, 2022. "Hippocampal representations switch from errors to predictions during acquisition of predictive associations," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Boaretto, Bruno R.R. & Budzinski, Roberto C. & Rossi, Kalel L. & Masoller, Cristina & Macau, Elbert E.N., 2023. "Spatial permutation entropy distinguishes resting brain states," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    15. Felipe Gerhard & Moritz Deger & Wilson Truccolo, 2017. "On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-31, February.
    16. Yuqi Liang & Junhao Liang & Chenchen Song & Mianxin Liu & Thomas Knöpfel & Pulin Gong & Changsong Zhou, 2023. "Complexity of cortical wave patterns of the wake mouse cortex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39076-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.