IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38704-1.html
   My bibliography  Save this article

A village in a dish model system for population-scale hiPSC studies

Author

Listed:
  • Drew R. Neavin

    (Garvan Institute of Medical Research)

  • Angela M. Steinmann

    (Garvan Institute of Medical Research)

  • Nona Farbehi

    (Garvan Institute of Medical Research
    University of New South Wales)

  • Han Sheng Chiu

    (University of Queensland)

  • Maciej S. Daniszewski

    (the University of Melbourne)

  • Himanshi Arora

    (Garvan Institute of Medical Research)

  • Yasmin Bermudez

    (Garvan Institute of Medical Research)

  • Cátia Moutinho

    (Garvan Institute of Medical Research)

  • Chia-Ling Chan

    (Garvan Institute of Medical Research)

  • Monique Bax

    (Victor Chang Cardiac Research Institute
    UNSW Medicine & Health, UNSW Sydney)

  • Mubarika Tyebally

    (Garvan Institute of Medical Research)

  • Vikkitharan Gnanasambandapillai

    (Garvan Institute of Medical Research)

  • Chuan E. Lam

    (Garvan Institute of Medical Research)

  • Uyen Nguyen

    (Garvan Institute of Medical Research)

  • Damián Hernández

    (the University of Melbourne)

  • Grace E. Lidgerwood

    (the University of Melbourne)

  • Robert M. Graham

    (Victor Chang Cardiac Research Institute
    UNSW Medicine & Health, UNSW Sydney
    St Vincent’s Hospital)

  • Alex W. Hewitt

    (University of Melbourne
    University of Tasmania)

  • Alice Pébay

    (the University of Melbourne
    the University of Melbourne)

  • Nathan J. Palpant

    (University of Queensland)

  • Joseph E. Powell

    (Garvan Institute of Medical Research
    UNSW Cellular Genomics Futures Institute, School of Medical Sciences, University of New South Wales)

Abstract

The mechanisms by which DNA alleles contribute to disease risk, drug response, and other human phenotypes are highly context-specific, varying across cell types and different conditions. Human induced pluripotent stem cells are uniquely suited to study these context-dependent effects but cell lines from hundreds or thousands of individuals are required. Village cultures, where multiple induced pluripotent stem lines are cultured and differentiated in a single dish, provide an elegant solution for scaling induced pluripotent stem experiments to the necessary sample sizes required for population-scale studies. Here, we show the utility of village models, demonstrating how cells can be assigned to an induced pluripotent stem line using single-cell sequencing and illustrating that the genetic, epigenetic or induced pluripotent stem line-specific effects explain a large percentage of gene expression variation for many genes. We demonstrate that village methods can effectively detect induced pluripotent stem line-specific effects, including sensitive dynamics of cell states.

Suggested Citation

  • Drew R. Neavin & Angela M. Steinmann & Nona Farbehi & Han Sheng Chiu & Maciej S. Daniszewski & Himanshi Arora & Yasmin Bermudez & Cátia Moutinho & Chia-Ling Chan & Monique Bax & Mubarika Tyebally & Vi, 2023. "A village in a dish model system for population-scale hiPSC studies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38704-1
    DOI: 10.1038/s41467-023-38704-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38704-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38704-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Helena Kilpinen & Angela Goncalves & Andreas Leha & Vackar Afzal & Kaur Alasoo & Sofie Ashford & Sendu Bala & Dalila Bensaddek & Francesco Paolo Casale & Oliver J. Culley & Petr Danecek & Adam Faulcon, 2017. "Common genetic variation drives molecular heterogeneity in human iPSCs," Nature, Nature, vol. 546(7658), pages 370-375, June.
    2. Helena Kilpinen & Angela Goncalves & Andreas Leha & Vackar Afzal & Kaur Alasoo & Sofie Ashford & Sendu Bala & Dalila Bensaddek & Francesco Paolo Casale & Oliver J. Culley & Petr Danecek & Adam Faulcon, 2017. "Correction: Corrigendum: Common genetic variation drives molecular heterogeneity in human iPSCs," Nature, Nature, vol. 546(7660), pages 686-686, June.
    3. Gioele La Manno & Ruslan Soldatov & Amit Zeisel & Emelie Braun & Hannah Hochgerner & Viktor Petukhov & Katja Lidschreiber & Maria E. Kastriti & Peter Lönnerberg & Alessandro Furlan & Jean Fan & Lars E, 2018. "RNA velocity of single cells," Nature, Nature, vol. 560(7719), pages 494-498, August.
    4. M. Büttner & J. Ostner & C. L. Müller & F. J. Theis & B. Schubert, 2021. "scCODA is a Bayesian model for compositional single-cell data analysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang Lu & Jan Zaucha & Rihab Gam & Hai Fang & Smithers & Matt E. Oates & Miguel Bernabe-Rubio & James Williams & Natalie Zelenka & Arun Prasad Pandurangan & Himani Tandon & Hashem Shihab & Raju Kalai, 2023. "Hypothesis-free phenotype prediction within a genetics-first framework," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Qiliang Ding & Matthew M. Edwards & Ning Wang & Xiang Zhu & Alexa N. Bracci & Michelle L. Hulke & Ya Hu & Yao Tong & Joyce Hsiao & Christine J. Charvet & Sulagna Ghosh & Robert E. Handsaker & Kevin Eg, 2021. "The genetic architecture of DNA replication timing in human pluripotent stem cells," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Sulagna Ghosh & Ralda Nehme & Lindy E. Barrett, 2022. "Greater genetic diversity is needed in human pluripotent stem cell models," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Rachael M. Zemek & Wee Loong Chin & Vanessa S. Fear & Ben Wylie & Thomas H. Casey & Cath Forbes & Caitlin M. Tilsed & Louis Boon & Belinda B. Guo & Anthony Bosco & Alistair R. R. Forrest & Michael J. , 2022. "Temporally restricted activation of IFNβ signaling underlies response to immune checkpoint therapy in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Matthew Tegtmeyer & Jatin Arora & Samira Asgari & Beth A. Cimini & Ajay Nadig & Emily Peirent & Dhara Liyanage & Gregory P. Way & Erin Weisbart & Aparna Nathan & Tiffany Amariuta & Kevin Eggan & Marzi, 2024. "High-dimensional phenotyping to define the genetic basis of cellular morphology," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Benjamin J. Schmiedel & Job Rocha & Cristian Gonzalez-Colin & Sourya Bhattacharyya & Ariel Madrigal & Christian H. Ottensmeier & Ferhat Ay & Vivek Chandra & Pandurangan Vijayanand, 2021. "COVID-19 genetic risk variants are associated with expression of multiple genes in diverse immune cell types," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Yuan Guan & Annika Enejder & Meiyue Wang & Zhuoqing Fang & Lu Cui & Shih-Yu Chen & Jingxiao Wang & Yalun Tan & Manhong Wu & Xinyu Chen & Patrik K. Johansson & Issra Osman & Koshi Kunimoto & Pierre Rus, 2021. "A human multi-lineage hepatic organoid model for liver fibrosis," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    8. Huanhuan Tan & Weixu Wang & Congjin Zhou & Yanfeng Wang & Shu Zhang & Pinglan Yang & Rui Guo & Wei Chen & Jinwen Zhang & Lan Ye & Yiqiang Cui & Ting Ni & Ke Zheng, 2023. "Single-cell RNA-seq uncovers dynamic processes orchestrated by RNA-binding protein DDX43 in chromatin remodeling during spermiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    9. Christoph Ziegenhain & Rickard Sandberg, 2021. "BAMboozle removes genetic variation from human sequence data for open data sharing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Yoshiaki Yasumizu & Naganari Ohkura & Hisashi Murata & Makoto Kinoshita & Soichiro Funaki & Satoshi Nojima & Kansuke Kido & Masaharu Kohara & Daisuke Motooka & Daisuke Okuzaki & Shuji Suganami & Eriko, 2022. "Myasthenia gravis-specific aberrant neuromuscular gene expression by medullary thymic epithelial cells in thymoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Jeff Yat-Fai Chung & Philip Chiu-Tsun Tang & Max Kam-Kwan Chan & Vivian Weiwen Xue & Xiao-Ru Huang & Calvin Sze-Hang Ng & Dongmei Zhang & Kam-Tong Leung & Chun-Kwok Wong & Tin-Lap Lee & Eric W-F Lam &, 2023. "Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Fabian Peisker & Maurice Halder & James Nagai & Susanne Ziegler & Nadine Kaesler & Konrad Hoeft & Ronghui Li & Eric M. J. Bindels & Christoph Kuppe & Julia Moellmann & Michael Lehrke & Christian Stopp, 2022. "Mapping the cardiac vascular niche in heart failure," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    15. Yi Huang & Anyongqi Wang & Wenjiang Zhou & Baoguo Li & Linshan Zhang & Agata M. Rudolf & Zengguang Jin & Catherine Hambly & Guanlin Wang & John R. Speakman, 2024. "Maternal dietary fat during lactation shapes single nucleus transcriptomic profile of postnatal offspring hypothalamus in a sexually dimorphic manner in mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Yan Tang & David J. Kwiatkowski & Elizabeth P. Henske, 2022. "Midkine expression by stem-like tumor cells drives persistence to mTOR inhibition and an immune-suppressive microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    17. Jun Dai & Shuyu Zheng & Matías M. Falco & Jie Bao & Johanna Eriksson & Sanna Pikkusaari & Sofia Forstén & Jing Jiang & Wenyu Wang & Luping Gao & Fernando Perez-Villatoro & Olli Dufva & Khalid Saeed & , 2024. "Tracing back primed resistance in cancer via sister cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Ryuki Shimada & Yuzuru Kato & Naoki Takeda & Sayoko Fujimura & Kei-ichiro Yasunaga & Shingo Usuki & Hitoshi Niwa & Kimi Araki & Kei-ichiro Ishiguro, 2023. "STRA8–RB interaction is required for timely entry of meiosis in mouse female germ cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Xiaojun Ren & Jianqing Liang & Yiming Zhang & Ning Jiang & Yuhui Xu & Mengdi Qiu & Yiqin Wang & Bing Zhao & Xiaojun Chen, 2022. "Single-cell transcriptomic analysis highlights origin and pathological process of human endometrioid endometrial carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Gaofei Li & Yicong Sun & Immanuel Kwok & Liting Yang & Wanying Wen & Peixian Huang & Mei Wu & Jing Li & Zhibin Huang & Zhaoyuan Liu & Shuai He & Wan Peng & Jin-Xin Bei & Florent Ginhoux & Lai Guan Ng , 2024. "Cebp1 and Cebpβ transcriptional axis controls eosinophilopoiesis in zebrafish," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38704-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.