IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36515-y.html
   My bibliography  Save this article

Seasonal activities of the phyllosphere microbiome of perennial crops

Author

Listed:
  • Adina Howe

    (Iowa State University
    Iowa State University
    Center for Advanced Bioenergy and Bioproducts Innovation)

  • Nejc Stopnisek

    (The Great Lakes Bioenergy Research Center, Michigan State University
    Michigan State University
    Michigan State University)

  • Shane K. Dooley

    (Iowa State University
    Iowa State University)

  • Fan Yang

    (Iowa State University)

  • Keara L. Grady

    (The Great Lakes Bioenergy Research Center, Michigan State University
    Michigan State University)

  • Ashley Shade

    (The Great Lakes Bioenergy Research Center, Michigan State University
    Michigan State University
    Michigan State University
    Michigan State University)

Abstract

Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs). We find that classes represented by these MAGs (Actinomycetia, Alpha- and Gamma- Proteobacteria, and Bacteroidota) are active in the late season, and upregulate transcripts for short-chain dehydrogenase, molybdopterin oxidoreductase, and polyketide cyclase. Stress-associated pathways are expressed for most MAGs, suggesting engagement with the host environment. We also detect seasonally activated biosynthetic pathways for terpenes and various non-ribosomal peptide pathways that are poorly annotated. Our findings support that leaf-associated bacterial populations are seasonally dynamic and responsive to host cues.

Suggested Citation

  • Adina Howe & Nejc Stopnisek & Shane K. Dooley & Fan Yang & Keara L. Grady & Ashley Shade, 2023. "Seasonal activities of the phyllosphere microbiome of perennial crops," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36515-y
    DOI: 10.1038/s41467-023-36515-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36515-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36515-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao Chen & Kinya Nomura & Xiaolin Wang & Reza Sohrabi & Jin Xu & Lingya Yao & Bradley C. Paasch & Li Ma & James Kremer & Yuti Cheng & Li Zhang & Nian Wang & Ertao Wang & Xiu-Fang Xin & Sheng Yang He, 2020. "A plant genetic network for preventing dysbiosis in the phyllosphere," Nature, Nature, vol. 580(7805), pages 653-657, April.
    2. Keara L. Grady & Jackson W. Sorensen & Nejc Stopnisek & John Guittar & Ashley Shade, 2019. "Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Stephen Nayfach & Zhou Jason Shi & Rekha Seshadri & Katherine S. Pollard & Nikos C. Kyrpides, 2019. "New insights from uncultivated genomes of the global human gut microbiome," Nature, Nature, vol. 568(7753), pages 505-510, April.
    4. Davide Bulgarelli & Matthias Rott & Klaus Schlaeppi & Emiel Ver Loren van Themaat & Nahal Ahmadinejad & Federica Assenza & Philipp Rauf & Bruno Huettel & Richard Reinhardt & Elmon Schmelzer & Joerg Pe, 2012. "Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota," Nature, Nature, vol. 488(7409), pages 91-95, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Zhang & Karen R. Jonscher & Zuyuan Zhang & Yi Xiong & Ryan S. Mueller & Jacob E. Friedman & Chongle Pan, 2022. "Islet autoantibody seroconversion in type-1 diabetes is associated with metagenome-assembled genomes in infant gut microbiomes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Hao Zhang & Zi-Wei Hua & Wen-Zhi Liang & Qiu-Hong Niu & Xiang Wang, 2020. "The Prevention of Bio-Organic Fertilizer Fermented from Cow Manure Compost by Bacillus sp. XG-1 on Watermelon Continuous Cropping Barrier," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    3. Zhaohui Cao & Wenlong Zuo & Lanxiang Wang & Junyu Chen & Zepeng Qu & Fan Jin & Lei Dai, 2023. "Spatial profiling of microbial communities by sequential FISH with error-robust encoding," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Djawad Radjabzadeh & Jos A. Bosch & André G. Uitterlinden & Aeilko H. Zwinderman & M. Arfan Ikram & Joyce B. J. Meurs & Annemarie I. Luik & Max Nieuwdorp & Anja Lok & Cornelia M. Duijn & Robert Kraaij, 2022. "Gut microbiome-wide association study of depressive symptoms," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Luigi Russi & Gianpiero Marconi & Nicoletta Ferradini & Beatrice Farda & Marika Pellegrini & Loretta Pace, 2022. "Investigating Population Genetic Diversity and Rhizosphere Microbiota of Central Apennines’ Artemisia eriantha," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    6. Amrita Gupta & Udai B. Singh & Pramod K. Sahu & Surinder Paul & Adarsh Kumar & Deepti Malviya & Shailendra Singh & Pandiyan Kuppusamy & Prakash Singh & Diby Paul & Jai P. Rai & Harsh V. Singh & Madhab, 2022. "Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review," IJERPH, MDPI, vol. 19(5), pages 1-29, March.
    7. Mingxing Wang & An-Hui Ge & Xingzhu Ma & Xiaolin Wang & Qiujin Xie & Like Wang & Xianwei Song & Mengchen Jiang & Weibing Yang & Jeremy D. Murray & Yayu Wang & Huan Liu & Xiaofeng Cao & Ertao Wang, 2024. "Dynamic root microbiome sustains soybean productivity under unbalanced fertilization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Xiaogang Li & Dele Chen & Víctor J. Carrión & Daniel Revillini & Shan Yin & Yuanhua Dong & Taolin Zhang & Xingxiang Wang & Manuel Delgado-Baquerizo, 2023. "Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Pin Su & Houxiang Kang & Qianze Peng & Wisnu Adi Wicaksono & Gabriele Berg & Zhuoxin Liu & Jiejia Ma & Deyong Zhang & Tomislav Cernava & Yong Liu, 2024. "Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Bin Ma & Caiyu Lu & Yiling Wang & Jingwen Yu & Kankan Zhao & Ran Xue & Hao Ren & Xiaofei Lv & Ronghui Pan & Jiabao Zhang & Yongguan Zhu & Jianming Xu, 2023. "A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Fiona B. Tamburini & Dylan Maghini & Ovokeraye H. Oduaran & Ryan Brewster & Michaella R. Hulley & Venesa Sahibdeen & Shane A. Norris & Stephen Tollman & Kathleen Kahn & Ryan G. Wagner & Alisha N. Wade, 2022. "Short- and long-read metagenomics of urban and rural South African gut microbiomes reveal a transitional composition and undescribed taxa," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Carla L. Abán & Giovanni Larama & Antonella Ducci & Jorgelina Huidobro & Michel Abanto & Silvina Vargas-Gil & Carolina Pérez-Brandan, 2022. "Soil Properties and Bacterial Communities Associated with the Rhizosphere of the Common Bean after Using Brachiaria brizantha as a Service Crop: A 10-Year Field Experiment," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    13. Sigal Leviatan & Saar Shoer & Daphna Rothschild & Maria Gorodetski & Eran Segal, 2022. "An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Nicholas Ozede Igiehon & Olubukola Oluranti Babalola, 2018. "Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture," IJERPH, MDPI, vol. 15(4), pages 1-25, March.
    15. Yayu Wang & Xiaolin Wang & Shuai Sun & Canzhi Jin & Jianmu Su & Jinpu Wei & Xinyue Luo & Jiawen Wen & Tong Wei & Sunil Kumar Sahu & Hongfeng Zou & Hongyun Chen & Zhixin Mu & Gengyun Zhang & Xin Liu & , 2022. "GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Feiyun Xu & Hanpeng Liao & Jinyong Yang & Yingjiao Zhang & Peng Yu & Yiying Cao & Ju Fang & Shu Chen & Liang Li & Leyun Sun & Chongxuan Du & Ke Wang & Xiaolin Dang & Zhiwei Feng & Yifan Cao & Ying Li , 2023. "Auxin-producing bacteria promote barley rhizosheath formation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Joe J. Lim & Christian Diener & James Wilson & Jacob J. Valenzuela & Nitin S. Baliga & Sean M. Gibbons, 2023. "Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Xin Zhou & Jinting Wang & Fang Liu & Junmin Liang & Peng Zhao & Clement K. M. Tsui & Lei Cai, 2022. "Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Liyu Zhang & Meiling Zhang & Shuyu Huang & Lujun Li & Qiang Gao & Yin Wang & Shuiqing Zhang & Shaomin Huang & Liang Yuan & Yanchen Wen & Kailou Liu & Xichu Yu & Dongchu Li & Lu Zhang & Xinpeng Xu & Ha, 2022. "A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Elio L Herzog & Melania Wäfler & Irene Keller & Sebastian Wolf & Martin S Zinkernagel & Denise C Zysset-Burri, 2021. "The importance of age in compositional and functional profiling of the human intestinal microbiome," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-13, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36515-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.