IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35342-x.html
   My bibliography  Save this article

Noradrenergic signaling mediates cortical early tagging and storage of remote memory

Author

Listed:
  • Xiaocen Fan

    (Fudan University
    Chinese Academy of Medical Sciences (2021RU009))

  • Jiachen Song

    (Fudan University
    Chinese Academy of Medical Sciences (2021RU009))

  • Chaonan Ma

    (Fudan University
    Chinese Academy of Medical Sciences (2021RU009))

  • Yanbo Lv

    (Fudan University
    Chinese Academy of Medical Sciences (2021RU009))

  • Feifei Wang

    (Fudan University
    Chinese Academy of Medical Sciences (2021RU009))

  • Lan Ma

    (Fudan University
    Chinese Academy of Medical Sciences (2021RU009))

  • Xing Liu

    (Fudan University
    Chinese Academy of Medical Sciences (2021RU009))

Abstract

The neocortical prefrontal memory engram generated during initial learning is critical for remote episodic memory storage, however, the nature of early cortical tagging remains unknown. Here we found that in mice, increased norepinephrine (NE) release from the locus coeruleus (LC) to the medial prefrontal cortex (mPFC) during contextual fear conditioning (CFC) was critical for engram tagging and remote memory storage, which was regulated by the ventrolateral periaqueductal grey. β-Blocker infusion, or knockout of β1-adrenergic receptor (β1-AR) in the mPFC, impaired the storage of remote CFC memory, which could not be rescued by activation of LC-mPFC NE projection. Remote memory retrieval induced the activation of mPFC engram cells that were tagged during CFC. Inhibition of LC-mPFC NE projection or β1-AR knockout impaired mPFC engram tagging. Juvenile mice had fewer LC NE neurons than adults and showed deficiency in mPFC engram tagging and remote memory of CFC. Activation of β1-AR signaling promoted mPFC early tagging and remote memory storage in juvenile mice. Our data demonstrate that activation of LC NEergic signaling during CFC memory encoding mediates engram early tagging in the mPFC and systems consolidation of remote memory.

Suggested Citation

  • Xiaocen Fan & Jiachen Song & Chaonan Ma & Yanbo Lv & Feifei Wang & Lan Ma & Xing Liu, 2022. "Noradrenergic signaling mediates cortical early tagging and storage of remote memory," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35342-x
    DOI: 10.1038/s41467-022-35342-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35342-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35342-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tomonori Takeuchi & Adrian J. Duszkiewicz & Alex Sonneborn & Patrick A. Spooner & Miwako Yamasaki & Masahiko Watanabe & Caroline C. Smith & Guillén Fernández & Karl Deisseroth & Robert W. Greene & Ric, 2016. "Locus coeruleus and dopaminergic consolidation of everyday memory," Nature, Nature, vol. 537(7620), pages 357-362, September.
    2. Xu Liu & Steve Ramirez & Petti T. Pang & Corey B. Puryear & Arvind Govindarajan & Karl Deisseroth & Susumu Tonegawa, 2012. "Optogenetic stimulation of a hippocampal engram activates fear memory recall," Nature, Nature, vol. 484(7394), pages 381-385, April.
    3. Mariana R. Matos & Esther Visser & Ioannis Kramvis & Rolinka J. van der Loo & Titia Gebuis & Robbert Zalm & Priyanka Rao-Ruiz & Huibert D. Mansvelder & August B. Smit & Michel C. van den Oever, 2019. "Memory strength gates the involvement of a CREB-dependent cortical fear engram in remote memory," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    2. Ruijie Li & Junjie Huang & Longhui Li & Zhikai Zhao & Susu Liang & Shanshan Liang & Meng Wang & Xiang Liao & Jing Lyu & Zhenqiao Zhou & Sibo Wang & Wenjun Jin & Haiyang Chen & Damaris Holder & Hongban, 2023. "Holistic bursting cells store long-term memory in auditory cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    4. Francesco Paolo Ulloa Severino & Oluwadamilola O. Lawal & Kristina Sakers & Shiyi Wang & Namsoo Kim & Alexander David Friedman & Sarah Anne Johnson & Chaichontat Sriworarat & Ryan H. Hughes & Scott H., 2023. "Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. Ayush Mandwal & Javier G Orlandi & Christoph Simon & Jörn Davidsen, 2021. "A biochemical mechanism for time-encoding memory formation within individual synapses of Purkinje cells," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-34, May.
    6. Heather C. Ratigan & Seetha Krishnan & Shai Smith & Mark E. J. Sheffield, 2023. "A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Nathan Bénac & G. Ezequiel Saraceno & Corey Butler & Nahoko Kuga & Yuya Nishimura & Taiki Yokoi & Ping Su & Takuya Sasaki & Mar Petit-Pedrol & Rémi Galland & Vincent Studer & Fang Liu & Yuji Ikegaya &, 2024. "Non-canonical interplay between glutamatergic NMDA and dopamine receptors shapes synaptogenesis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Chih-Ming Wang & Chun-Yuan Wu & Chen-En Lin & Ming-Chi Hsu & Jing-Chun Lin & Chuan-Chin Huang & Ting-Yu Lien & Hsin-Kai Lin & Ting-Wei Chang & Hsueh-Cheng Chiang, 2023. "Forgotten memory storage and retrieval in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Wenhan Luo & Di Yun & Yi Hu & Miaomiao Tian & Jiajun Yang & Yifan Xu & Yong Tang & Yang Zhan & Hong Xie & Ji-Song Guan, 2022. "Acquiring new memories in neocortex of hippocampal-lesioned mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Meng Wang & Ke Liu & Junxia Pan & Jialin Li & Pei Sun & Yongsheng Zhang & Longhui Li & Wenyan Guo & Qianqian Xin & Zhikai Zhao & Yurong Liu & Zhenqiao Zhou & Jing Lyu & Ting Zheng & Yunyun Han & Chunq, 2022. "Brain-wide projection reconstruction of single functionally defined neurons," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Adrien T. Stanley & Michael R. Post & Clay Lacefield & David Sulzer & Maria Concetta Miniaci, 2023. "Norepinephrine release in the cerebellum contributes to aversive learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Montangie, Lisandro & Montani, Fernando, 2015. "Quantifying higher-order correlations in a neuronal pool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 388-400.
    13. Stephanie L. Grella & Amanda H. Fortin & Evan Ruesch & John H. Bladon & Leanna F. Reynolds & Abby Gross & Monika Shpokayte & Christine Cincotta & Yosif Zaki & Steve Ramirez, 2022. "Reactivating hippocampal-mediated memories during reconsolidation to disrupt fear," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Paul J. Lamothe-Molina & Andreas Franzelin & Lennart Beck & Dong Li & Lea Auksutat & Tim Fieblinger & Laura Laprell & Joachim Alhbeck & Christine E. Gee & Matthias Kneussel & Andreas K. Engel & Claus , 2022. "ΔFosB accumulation in hippocampal granule cells drives cFos pattern separation during spatial learning," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Jung Ho Hyun & Kenichiro Nagahama & Ho Namkung & Neymi Mignocchi & Seung-Eon Roh & Patrick Hannan & Sarah Krüssel & Chuljung Kwak & Abigail McElroy & Bian Liu & Mingguang Cui & Seunghwan Lee & Dongmin, 2022. "Tagging active neurons by soma-targeted Cal-Light," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Dheeraj S. Roy & Young-Gyun Park & Minyoung E. Kim & Ying Zhang & Sachie K. Ogawa & Nicholas DiNapoli & Xinyi Gu & Jae H. Cho & Heejin Choi & Lee Kamentsky & Jared Martin & Olivia Mosto & Tomomi Aida , 2022. "Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Yanjun Sun & Lisa M. Giocomo, 2022. "Neural circuit dynamics of drug-context associative learning in the mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Jia-Hou Poh & Mai-Anh T. Vu & Jessica K. Stanek & Abigail Hsiung & Tobias Egner & R. Alison Adcock, 2022. "Hippocampal convergence during anticipatory midbrain activation promotes subsequent memory formation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Tamás Füzesi & Neilen P. Rasiah & David G. Rosenegger & Mijail Rojas-Carvajal & Taylor Chomiak & Núria Daviu & Leonardo A. Molina & Kathryn Simone & Toni-Lee Sterley & Wilten Nicola & Jaideep S. Bains, 2023. "Hypothalamic CRH neurons represent physiological memory of positive and negative experience," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35342-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.