IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34866-6.html
   My bibliography  Save this article

Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing

Author

Listed:
  • Yu Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lidian Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chengqi Zhang

    (Beihang University)

  • Jingxia Wang

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Junchao Liu

    (Chinese Academy of Sciences)

  • Changqing Ye

    (Suzhou University of Science and Technology)

  • Zhichao Dong

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Lei Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yanlin Song

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

3D photonic crystals (PCs) have attracted extensive attention due to their unique optical properties. However, fabricating 3D PCs structure by 3D printing colloidal particles is limited by control of assembly under a fast-printing speed. Here, we employ continuous digital light processing (DLP) 3D printing strategy with hydrogen bonds assisted colloidal inks for fabricating well-assembled 3D PCs structures. Stable dispersion of colloidal particles inside UV-curable system induced by hydrogen bonding and suction force induced by continuous curing manner cooperatively realize the simultaneous macroscopic printing and microscopic particle assembly, which endows volumetric color property. Structural color can be well regulated by controlling the particle diameter and printing speed, through which various complex 3D structures with desired structural color distribution and optical light-guide properties are acquired. This 3D color construction approach shows great potential in customized jewelry accessories, decoration and optical device preparation, and will innovate the development of structural color.

Suggested Citation

  • Yu Zhang & Lidian Zhang & Chengqi Zhang & Jingxia Wang & Junchao Liu & Changqing Ye & Zhichao Dong & Lei Wu & Yanlin Song, 2022. "Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34866-6
    DOI: 10.1038/s41467-022-34866-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34866-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34866-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masateru M. Ito & Andrew H. Gibbons & Detao Qin & Daisuke Yamamoto & Handong Jiang & Daisuke Yamaguchi & Koichiro Tanaka & Easan Sivaniah, 2019. "Structural colour using organized microfibrillation in glassy polymer films," Nature, Nature, vol. 570(7761), pages 363-367, June.
    2. Yu Zhang & Zhichao Dong & Chuxin Li & Huifeng Du & Nicholas X. Fang & Lei Wu & Yanlin Song, 2020. "Continuous 3D printing from one single droplet," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Kevin T. P. Lim & Hailong Liu & Yejing Liu & Joel K. W. Yang, 2019. "Holographic colour prints for enhanced optical security by combined phase and amplitude control," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Yurii A. Vlasov & Martin O'Boyle & Hendrik F. Hamann & Sharee J. McNab, 2005. "Active control of slow light on a chip with photonic crystal waveguides," Nature, Nature, vol. 438(7064), pages 65-69, November.
    5. Ryan L. Truby & Jennifer A. Lewis, 2016. "Printing soft matter in three dimensions," Nature, Nature, vol. 540(7633), pages 371-378, December.
    6. Yejing Liu & Hao Wang & Jinfa Ho & Ryan C. Ng & Ray J. H. Ng & Valerian H. Hall-Chen & Eleen H. H. Koay & Zhaogang Dong & Hailong Liu & Cheng-Wei Qiu & Julia R. Greer & Joel K. W. Yang, 2019. "Structural color three-dimensional printing by shrinking photonic crystals," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    7. Yuqi Zhang & Qianqian Fu & Jianping Ge, 2015. "Photonic sensing of organic solvents through geometric study of dynamic reflection spectrum," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    8. Xiao Ming Goh & Yihan Zheng & Shawn J. Tan & Lei Zhang & Karthik Kumar & Cheng-Wei Qiu & Joel K. W. Yang, 2014. "Three-dimensional plasmonic stereoscopic prints in full colour," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    9. Sedat Nizamoglu & Malte C. Gather & Matjaž Humar & Myunghwan Choi & Seonghoon Kim & Ki Su Kim & Sei Kwang Hahn & Giuliano Scarcelli & Mark Randolph & Robert W. Redmond & Seok Hyun Yun, 2016. "Bioabsorbable polymer optical waveguides for deep-tissue photomedicine," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miaomiao Li & Bolun Peng & Quanqian Lyu & Xiaodong Chen & Zhen Hu & Xiujuan Zhang & Bijin Xiong & Lianbin Zhang & Jintao Zhu, 2024. "Scalable production of structurally colored composite films by shearing supramolecular composites of polymers and colloids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhishek Kumar & Yi Ji Tan & Nikhil Navaratna & Manoj Gupta & Prakash Pitchappa & Ranjan Singh, 2024. "Slow light topological photonics with counter-propagating waves and its active control on a chip," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Minju Song & Yoonkyum Kim & Du San Baek & Ho Young Kim & Da Hwi Gu & Haiyang Li & Benjamin V. Cunning & Seong Eun Yang & Seung Hwae Heo & Seunghyun Lee & Minhyuk Kim & June Sung Lim & Hu Young Jeong &, 2023. "3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Keliang Liu & Haibo Ding & Sen Li & Yanfang Niu & Yi Zeng & Junning Zhang & Xin Du & Zhongze Gu, 2022. "3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Feng Jin & Jie Liu & Yuan-Yuan Zhao & Xian-Zi Dong & Mei-Ling Zheng & Xuan-Ming Duan, 2022. "λ/30 inorganic features achieved by multi-photon 3D lithography," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Fei Zhang & Yinghui Guo & Mingbo Pu & Lianwei Chen & Mingfeng Xu & Minghao Liao & Lanting Li & Xiong Li & Xiaoliang Ma & Xiangang Luo, 2023. "Meta-optics empowered vector visual cryptography for high security and rapid decryption," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Zhuoxing Liu & Zidong Zhan & Tao Shen & Ning Li & Chengqi Zhang & Cunlong Yu & Chuxin Li & Yifan Si & Lei Jiang & Zhichao Dong, 2023. "Dual-bionic superwetting gears with liquid directional steering for oil-water separation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Zijian Shi & Zhensong Wan & Ziyu Zhan & Kaige Liu & Qiang Liu & Xing Fu, 2023. "Super-resolution orbital angular momentum holography," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Kaicheng Deng & Yao Tang & Yan Xiao & Danni Zhong & Hua Zhang & Wen Fang & Liyin Shen & Zhaochuang Wang & Jiazhen Pan & Yuwen Lu & Changming Chen & Yun Gao & Qiao Jin & Lenan Zhuang & Hao Wan & Liujin, 2023. "A biodegradable, flexible photonic patch for in vivo phototherapy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Dongliang Fan & Xi Yuan & Wenyu Wu & Renjie Zhu & Xin Yang & Yuxuan Liao & Yunteng Ma & Chufan Xiao & Cheng Chen & Changyue Liu & Hongqiang Wang & Peiwu Qin, 2022. "Self-shrinking soft demoulding for complex high-aspect-ratio microchannels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Caicong Li & Jianxiang Cheng & Yunfeng He & Xiangnan He & Ziyi Xu & Qi Ge & Canhui Yang, 2023. "Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Lingling Guan & Chun Cao & Xi Liu & Qiulan Liu & Yiwei Qiu & Xiaobing Wang & Zhenyao Yang & Huiying Lai & Qiuyuan Sun & Chenliang Ding & Dazhao Zhu & Cuifang Kuang & Xu Liu, 2024. "Light and matter co-confined multi-photon lithography," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Jiao Geng & Liye Xu & Wei Yan & Liping Shi & Min Qiu, 2023. "High-speed laser writing of structural colors for full-color inkless printing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Tomohiro Mori & Hao Wang & Wang Zhang & Chern Chia Ser & Deepshikha Arora & Cheng-Feng Pan & Hao Li & Jiabin Niu & M. A. Rahman & Takeshi Mori & Hideyuki Koishi & Joel K. W. Yang, 2023. "Pick and place process for uniform shrinking of 3D printed micro- and nano-architected materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Wenqi Ouyang & Xiayi Xu & Wanping Lu & Ni Zhao & Fei Han & Shih-Chi Chen, 2023. "Ultrafast 3D nanofabrication via digital holography," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Tsang, Chi Him Alpha & Huang, Haibao & Xuan, Jin & Wang, Huizhi & Leung, D.Y.C., 2020. "Graphene materials in green energy applications: Recent development and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    18. Pengcheng Chen & Xiaoyi Xu & Tianxin Wang & Chao Zhou & Dunzhao Wei & Jianan Ma & Junjie Guo & Xuejing Cui & Xiaoyan Cheng & Chenzhu Xie & Shuang Zhang & Shining Zhu & Min Xiao & Yong Zhang, 2023. "Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Zhi-Yong Hu & Yong-Lai Zhang & Chong Pan & Jian-Yu Dou & Zhen-Ze Li & Zhen-Nan Tian & Jiang-Wei Mao & Qi-Dai Chen & Hong-Bo Sun, 2022. "Miniature optoelectronic compound eye camera," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Zizheng Fang & Yunpeng Shi & Hongfeng Mu & Runzhi Lu & Jingjun Wu & Tao Xie, 2023. "3D printing of dynamic covalent polymer network with on-demand geometric and mechanical reprogrammability," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34866-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.