IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33740-9.html
   My bibliography  Save this article

Hospitalisation and mortality risk of SARS-COV-2 variant omicron sub-lineage BA.2 compared to BA.1 in England

Author

Listed:
  • H. H. Webster

    (UKHSA COVID-19 National Epidemiology Cell)

  • T. Nyberg

    (University of Cambridge)

  • M. A. Sinnathamby

    (UKHSA COVID-19 National Epidemiology Cell)

  • N. Abdul Aziz

    (UKHSA COVID-19 National Epidemiology Cell)

  • N. Ferguson

    (Imperial College London)

  • G. Seghezzo

    (UKHSA COVID-19 National Epidemiology Cell)

  • P. B. Blomquist

    (UKHSA Outbreak Surveillance Team)

  • J. Bridgen

    (UKHSA Outbreak Surveillance Team)

  • M. Chand

    (UKHSA Genomics and Public Health Analysis)

  • N. Groves

    (UKHSA Genomics and Public Health Analysis)

  • R. Myers

    (UKHSA Genomics and Public Health Analysis)

  • R. Hope

    (UKHSA COVID-19 National Epidemiology Cell)

  • E. Ashano

    (UKHSA HCAI, Fungal, AMR, AMU & Sepsis Division)

  • J. Lopez-Bernal

    (UKHSA COVID-19 Surveillance Cell
    NIHR Health Protection Research Unit for Respiratory Infections)

  • D. Angelis

    (University of Cambridge
    UKHSA Statistics, Modelling and Economics Department
    UKHSA Joint Modelling Team
    NIHR Health Protection Research Unit for Behavioural Science and Evaluation)

  • G. Dabrera

    (UKHSA COVID-19 National Epidemiology Cell)

  • A. M. Presanis

    (University of Cambridge)

  • S. Thelwall

    (UKHSA COVID-19 National Epidemiology Cell)

Abstract

The Omicron variant of SARS-CoV-2 became the globally dominant variant in early 2022. A sub-lineage of the Omicron variant (BA.2) was identified in England in January 2022. Here, we investigated hospitalisation and mortality risks of COVID-19 cases with the Omicron sub-lineage BA.2 (n = 258,875) compared to BA.1 (n = 984,337) in a large cohort study in England. We estimated the risk of hospital attendance, hospital admission or death using multivariable stratified proportional hazards regression models. After adjustment for confounders, BA.2 cases had lower or similar risks of death (HR = 0.80, 95% CI 0.71–0.90), hospital admission (HR = 0.88, 95% CI 0.83–0.94) and any hospital attendance (HR = 0.98, 95% CI 0.95–1.01). These findings that the risk of severe outcomes following infection with BA.2 SARS-CoV-2 was slightly lower or equivalent to the BA.1 sub-lineage can inform public health strategies in countries where BA.2 is spreading.

Suggested Citation

  • H. H. Webster & T. Nyberg & M. A. Sinnathamby & N. Abdul Aziz & N. Ferguson & G. Seghezzo & P. B. Blomquist & J. Bridgen & M. Chand & N. Groves & R. Myers & R. Hope & E. Ashano & J. Lopez-Bernal & D. , 2022. "Hospitalisation and mortality risk of SARS-COV-2 variant omicron sub-lineage BA.2 compared to BA.1 in England," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33740-9
    DOI: 10.1038/s41467-022-33740-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33740-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33740-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erik Volz & Swapnil Mishra & Meera Chand & Jeffrey C. Barrett & Robert Johnson & Lily Geidelberg & Wes R. Hinsley & Daniel J. Laydon & Gavin Dabrera & Áine O’Toole & Robert Amato & Manon Ragonnet-Cron, 2021. "Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England," Nature, Nature, vol. 593(7858), pages 266-269, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Marziano & Giorgio Guzzetta & Alessia Mammone & Flavia Riccardo & Piero Poletti & Filippo Trentini & Mattia Manica & Andrea Siddu & Antonino Bella & Paola Stefanelli & Patrizio Pezzotti & Ma, 2021. "The effect of COVID-19 vaccination in Italy and perspectives for living with the virus," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Patrick Munk & Christian Brinch & Frederik Duus Møller & Thomas N. Petersen & Rene S. Hendriksen & Anne Mette Seyfarth & Jette S. Kjeldgaard & Christina Aaby Svendsen & Bram Bunnik & Fanny Berglund & , 2022. "Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Santiago Justo Arevalo & Carmen Sofia Uribe Calampa & Cinthy Jimenez Silva & Mauro Quiñones Aguilar & Remco Bouckaert & Joao Renato Rebello Pinho, 2023. "Phylodynamic of SARS-CoV-2 during the second wave of COVID-19 in Peru," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Mello, Marco & Moscelli, Giuseppe, 2022. "Voting, contagion and the trade-off between public health and political rights: Quasi-experimental evidence from the Italian 2020 polls," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 1025-1052.
    5. Joel O. Wertheim & Jade C. Wang & Mindy Leelawong & Darren P. Martin & Jennifer L. Havens & Moinuddin A. Chowdhury & Jonathan E. Pekar & Helly Amin & Anthony Arroyo & Gordon A. Awandare & Hoi Yan Chow, 2022. "Detection of SARS-CoV-2 intra-host recombination during superinfection with Alpha and Epsilon variants in New York City," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Andreia L. Pinto & Ranjit K. Rai & Jonathan C. Brown & Paul Griffin & James R. Edgar & Anand Shah & Aran Singanayagam & Claire Hogg & Wendy S. Barclay & Clare E. Futter & Thomas Burgoyne, 2022. "Ultrastructural insight into SARS-CoV-2 entry and budding in human airway epithelium," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Dinesh Aggarwal & Ben Warne & Aminu S. Jahun & William L. Hamilton & Thomas Fieldman & Louis Plessis & Verity Hill & Beth Blane & Emmeline Watkins & Elizabeth Wright & Grant Hall & Catherine Ludden & , 2022. "Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Kuan-Ying A. Huang & Xiaorui Chen & Arpita Mohapatra & Hong Thuy Vy Nguyen & Lisa Schimanski & Tiong Kit Tan & Pramila Rijal & Susan K. Vester & Rory A. Hills & Mark Howarth & Jennifer R. Keeffe & Ale, 2023. "Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Wenjuan Dong & Jing Wang & Lei Tian & Jianying Zhang & Erik W. Settles & Chao Qin & Daniel R. Steinken-Kollath & Ashley N. Itogawa & Kimberly R. Celona & Jinhee Yi & Mitchell Bryant & Heather Mead & S, 2023. "Factor Xa cleaves SARS-CoV-2 spike protein to block viral entry and infection," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Burridge, James & Gnacik, Michał, 2022. "Public efforts to reduce disease transmission implied from a spatial game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33740-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.