IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33540-1.html
   My bibliography  Save this article

Multicolor ultralong phosphorescence from perovskite-like octahedral α-AlF3

Author

Listed:
  • Peisheng Cao

    (Sichuan University)

  • Haoyue Zheng

    (Sichuan University)

  • Peng Wu

    (Sichuan University
    Sichuan University)

Abstract

Designing organic fluorescent and phosphorescent materials based on various core fluorophore has gained great attention, but it is unclear whether similar luminescent units exist for inorganic materials. Inspired by the BX6 octahedral structure of luminescent metal halide perovskites (MHP), here we propose that the BX6 octahedron may be a core structure for luminescent inorganic materials. In this regard, excitation-dependent color-tunable phosphorescence is discovered from α-AlF3 featuring AlF6 octahedron. Through further exploration of the BX6 unit by altering the dimension and changing the center metal (B) and ligand (X), luminescence from KAlF4, (NH4)3AlF6, AlCl3, Al(OH)3, Ga2O3, InCl3, and CdCl2 are also discovered. The phosphorescence of α-AlF3 can be ascribed to clusterization-triggered emission, i.e., weak through space interaction of the n electrons of F atoms bring close proximity in the AlF6 octahedra (inter/intra). These discoveries will deepen the understanding and contribute to further development of BX6 octahedron-based luminescent materials.

Suggested Citation

  • Peisheng Cao & Haoyue Zheng & Peng Wu, 2022. "Multicolor ultralong phosphorescence from perovskite-like octahedral α-AlF3," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33540-1
    DOI: 10.1038/s41467-022-33540-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33540-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33540-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhao Yuan & Chenkun Zhou & Yu Tian & Yu Shu & Joshua Messier & Jamie C. Wang & Lambertus J. van de Burgt & Konstantinos Kountouriotis & Yan Xin & Ethan Holt & Kirk Schanze & Ronald Clark & Theo Siegri, 2017. "One-dimensional organic lead halide perovskites with efficient bluish white-light emission," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    2. Jibiao Jin & He Jiang & Qingqing Yang & Lele Tang & Ye Tao & Yuanyuan Li & Runfeng Chen & Chao Zheng & Quli Fan & Kenneth Yin Zhang & Qiang Zhao & Wei Huang, 2020. "Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Marina R. Filip & Giles E. Eperon & Henry J. Snaith & Feliciano Giustino, 2014. "Steric engineering of metal-halide perovskites with tunable optical band gaps," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    4. Ying Wang & Jiazhuo Li & Zhiwei Zhou & Ronghui Zhou & Qun Sun & Peng Wu, 2021. "Halo-fluorescein for photodynamic bacteria inactivation in extremely acidic conditions," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Xiao Luo & Liujia Qian & Yansheng Xiao & Yao Tang & Yang Zhao & Xia Wang & Luyan Gu & Zuhai Lei & Jianming Bao & Jiahui Wu & Tingting He & Fupin Hu & Jing Zheng & Honglin Li & Weiping Zhu & Lei Shao &, 2019. "A diversity-oriented rhodamine library for wide-spectrum bactericidal agents with low inducible resistance against resistant pathogens," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Shuo Wang & Qian Zhao & Abhijit Hazarika & Simiao Li & Yue Wu & Yaxin Zhai & Xihan Chen & Joseph M. Luther & Guoran Li, 2023. "Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Jiuyang Li & Xun Li & Guangming Wang & Xuepu Wang & Minjian Wu & Jiahui Liu & Kaka Zhang, 2023. "A direct observation of up-converted room-temperature phosphorescence in an anti-Kasha dopant-matrix system," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Xinchen Dai & Pramod Koshy & Charles Christopher Sorrell & Jongchul Lim & Jae Sung Yun, 2020. "Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues," Energies, MDPI, vol. 13(23), pages 1-24, December.
    6. Feng Ke & Jiejuan Yan & Shanyuan Niu & Jiajia Wen & Ketao Yin & Hong Yang & Nathan R. Wolf & Yan-Kai Tzeng & Hemamala I. Karunadasa & Young S. Lee & Wendy L. Mao & Yu Lin, 2022. "Cesium-mediated electron redistribution and electron-electron interaction in high-pressure metallic CsPbI3," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Naveen Kumar Elumalai & Md Arafat Mahmud & Dian Wang & Ashraf Uddin, 2016. "Perovskite Solar Cells: Progress and Advancements," Energies, MDPI, vol. 9(11), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33540-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.