IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33451-1.html
   My bibliography  Save this article

Wien effect in interfacial water dissociation through proton-permeable graphene electrodes

Author

Listed:
  • J. Cai

    (The University of Manchester
    The University of Manchester
    National University of Defense Technology)

  • E. Griffin

    (The University of Manchester
    The University of Manchester)

  • V. H. Guarochico-Moreira

    (The University of Manchester
    The University of Manchester
    Facultad de Ciencias Naturales y Matemáticas)

  • D. Barry

    (The University of Manchester)

  • B. Xin

    (The University of Manchester
    The University of Manchester)

  • M. Yagmurcukardes

    (Universiteit Antwerpen
    Izmir Institute of Technology)

  • S. Zhang

    (Tianjin University)

  • A. K. Geim

    (The University of Manchester
    The University of Manchester
    National University of Singapore)

  • F. M. Peeters

    (Universiteit Antwerpen)

  • M. Lozada-Hidalgo

    (The University of Manchester
    The University of Manchester)

Abstract

Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 107 V m−1, sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O $$\leftrightarrows$$ ⇆ H+ + OH−) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 108 V m−1. The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager’s theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.

Suggested Citation

  • J. Cai & E. Griffin & V. H. Guarochico-Moreira & D. Barry & B. Xin & M. Yagmurcukardes & S. Zhang & A. K. Geim & F. M. Peeters & M. Lozada-Hidalgo, 2022. "Wien effect in interfacial water dissociation through proton-permeable graphene electrodes," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33451-1
    DOI: 10.1038/s41467-022-33451-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33451-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33451-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kailong Hu & Tatsuhiko Ohto & Yuki Nagata & Mitsuru Wakisaka & Yoshitaka Aoki & Jun-ichi Fujita & Yoshikazu Ito, 2021. "Catalytic activity of graphene-covered non-noble metals governed by proton penetration in electrochemical hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. S. Hu & M. Lozada-Hidalgo & F. C. Wang & A. Mishchenko & F. Schedin & R. R. Nair & E. W. Hill & D. W. Boukhvalov & M. I. Katsnelson & R. A. W. Dryfe & I. V. Grigorieva & H. A. Wu & A. K. Geim, 2014. "Proton transport through one-atom-thick crystals," Nature, Nature, vol. 516(7530), pages 227-230, December.
    3. P. Z. Sun & Q. Yang & W. J. Kuang & Y. V. Stebunov & W. Q. Xiong & J. Yu & R. R. Nair & M. I. Katsnelson & S. J. Yuan & I. V. Grigorieva & M. Lozada-Hidalgo & F. C. Wang & A. K. Geim, 2020. "Limits on gas impermeability of graphene," Nature, Nature, vol. 579(7798), pages 229-232, March.
    4. Angelo Montenegro & Chayan Dutta & Muhammet Mammetkuliev & Haotian Shi & Bingya Hou & Dhritiman Bhattacharyya & Bofan Zhao & Stephen B. Cronin & Alexander V. Benderskii, 2021. "Asymmetric response of interfacial water to applied electric fields," Nature, Nature, vol. 594(7861), pages 62-65, June.
    5. L. Mogg & S. Zhang & G.-P. Hao & K. Gopinadhan & D. Barry & B. L. Liu & H. M. Cheng & A. K. Geim & M. Lozada-Hidalgo, 2019. "Perfect proton selectivity in ion transport through two-dimensional crystals," Nature Communications, Nature, vol. 10(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Huang & E. Griffin & J. Cai & B. Xin & J. Tong & Y. Fu & V. Kravets & F. M. Peeters & M. Lozada-Hidalgo, 2023. "Gate-controlled suppression of light-driven proton transport through graphene electrodes," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Z. F. Wu & P. Z. Sun & O. J. Wahab & Y. T. Tan & D. Barry & D. Periyanagounder & P. B. Pillai & Q. Dai & W. Q. Xiong & L. F. Vega & K. Lulla & S. J. Yuan & R. R. Nair & E. Daviddi & P. R. Unwin & A. K, 2023. "Proton and molecular permeation through the basal plane of monolayer graphene oxide," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. S. Huang & E. Griffin & J. Cai & B. Xin & J. Tong & Y. Fu & V. Kravets & F. M. Peeters & M. Lozada-Hidalgo, 2023. "Gate-controlled suppression of light-driven proton transport through graphene electrodes," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Zhihua Zhou & Yongtao Tan & Qian Yang & Achintya Bera & Zecheng Xiong & Mehmet Yagmurcukardes & Minsoo Kim & Yichao Zou & Guanghua Wang & Artem Mishchenko & Ivan Timokhin & Canbin Wang & Hao Wang & Ch, 2022. "Gas permeation through graphdiyne-based nanoporous membranes," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Yong-Qing Yan & Ya Chen & Zhao Wang & Li-Hua Chen & Hao-Lin Tang & Bao-Lian Su, 2023. "Electrochemistry-assisted selective butadiene hydrogenation with water," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Chao-Yu Li & Ming Chen & Shuai Liu & Xinyao Lu & Jinhui Meng & Jiawei Yan & Héctor D. Abruña & Guang Feng & Tianquan Lian, 2022. "Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yang, Huayu & Yan, Bowen & Chen, Wei & Fan, Daming, 2023. "Prediction and innovation of sustainable continuous flow microwave processing based on numerical simulations: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Liyan Dai & Jinyan Zhao & Jingrui Li & Bohan Chen & Shijie Zhai & Zhongying Xue & Zengfeng Di & Boyuan Feng & Yanxiao Sun & Yunyun Luo & Ming Ma & Jie Zhang & Sunan Ding & Libo Zhao & Zhuangde Jiang &, 2022. "Highly heterogeneous epitaxy of flexoelectric BaTiO3-δ membrane on Ge," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Quanquan Guo & Wei Li & Xiaodong Li & Jiaxu Zhang & Davood Sabaghi & Jianjun Zhang & Bowen Zhang & Dongqi Li & Jingwei Du & Xingyuan Chu & Sein Chung & Kilwon Cho & Nguyen Ngan Nguyen & Zhongquan Liao, 2024. "Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Shaila Jamal & Hossain Mohiuddin, 2020. "Active transportation indicators and establishing baseline in a developing country context: A study of Rajshahi, Bangladesh," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1894-1920, December.
    11. P. Z. Sun & M. Yagmurcukardes & R. Zhang & W. J. Kuang & M. Lozada-Hidalgo & B. L. Liu & H.-M. Cheng & F. C. Wang & F. M. Peeters & I. V. Grigorieva & A. K. Geim, 2021. "Exponentially selective molecular sieving through angstrom pores," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Kaian Sun & Xueyan Wu & Zewen Zhuang & Leyu Liu & Jinjie Fang & Lingyou Zeng & Junguo Ma & Shoujie Liu & Jiazhan Li & Ruoyun Dai & Xin Tan & Ke Yu & Di Liu & Weng-Chon Cheong & Aijian Huang & Yunqi Li, 2022. "Interfacial water engineering boosts neutral water reduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Benbing Shi & Xiao Pang & Shunning Li & Hong Wu & Jianliang Shen & Xiaoyao Wang & Chunyang Fan & Li Cao & Tianhao Zhu & Ming Qiu & Zhuoyu Yin & Yan Kong & Yiqin Liu & Mingzheng Zhang & Yawei Liu & Fen, 2022. "Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Linghui Sun & Ninghong Jia & Chun Feng & Lu Wang & Siyuan Liu & Weifeng Lyu, 2023. "Exploration of Oil/Water/Gas Occurrence State in Shale Reservoir by Molecular Dynamics Simulation," Energies, MDPI, vol. 16(21), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33451-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.