IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32449-z.html
   My bibliography  Save this article

Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O

Author

Listed:
  • Jie Zhou

    (South China Normal University)

  • Jie Li

    (South China Normal University)

  • Liang Kan

    (South China Normal University)

  • Lei Zhang

    (South China Normal University)

  • Qing Huang

    (South China Normal University)

  • Yong Yan

    (South China Normal University)

  • Yifa Chen

    (South China Normal University)

  • Jiang Liu

    (South China Normal University)

  • Shun-Li Li

    (South China Normal University)

  • Ya-Qian Lan

    (South China Normal University)

Abstract

Mimicking natural photosynthesis to convert CO2 with H2O into value-added fuels achieving overall reaction is a promising way to reduce the atmospheric CO2 level. Casting the catalyst of two or more catalytic sites with rapid electron transfer and interaction may be an effective strategy for coupling photocatalytic CO2 reduction and H2O oxidation. Herein, based on the MOF ∪ COF collaboration, we have carefully designed and synthesized a crystalline hetero-metallic cluster catalyst denoted MCOF-Ti6Cu3 with spatial separation and functional cooperation between oxidative and reductive clusters. It utilizes dynamic covalent bonds between clusters to promote photo-induced charge separation and transfer efficiency, to drive both the photocatalytic oxidative and reductive reactions. MCOF-Ti6Cu3 exhibits fine activity in the conversion of CO2 with water into HCOOH (169.8 μmol g−1h−1). Remarkably, experiments and theoretical calculations reveal that photo-excited electrons are transferred from Ti to Cu, indicating that the Cu cluster is the catalytic reduction center.

Suggested Citation

  • Jie Zhou & Jie Li & Liang Kan & Lei Zhang & Qing Huang & Yong Yan & Yifa Chen & Jiang Liu & Shun-Li Li & Ya-Qian Lan, 2022. "Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32449-z
    DOI: 10.1038/s41467-022-32449-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32449-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32449-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhi-Hao Yan & Ming-Hao Du & Junxue Liu & Shengye Jin & Cheng Wang & Gui-Lin Zhuang & Xiang-Jian Kong & La-Sheng Long & Lan-Sun Zheng, 2018. "Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Yimin A. Wu & Ian McNulty & Cong Liu & Kah Chun Lau & Qi Liu & Arvydas P. Paulikas & Cheng-Jun Sun & Zhonghou Cai & Jeffrey R. Guest & Yang Ren & Vojislav Stamenkovic & Larry A. Curtiss & Yuzi Liu & T, 2019. "Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol," Nature Energy, Nature, vol. 4(11), pages 957-968, November.
    3. Hai-Sen Xu & Yi Luo & Xing Li & Pei Zhen See & Zhongxin Chen & Tianqiong Ma & Lin Liang & Kai Leng & Ibrahim Abdelwahab & Lin Wang & Runlai Li & Xiangyan Shi & Yi Zhou & Xiu Fang Lu & Xiaoxu Zhao & Cu, 2020. "Single crystal of a one-dimensional metallo-covalent organic framework," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    4. Zhuo Jiang & Xiaohui Xu & Yanhang Ma & Hae Sung Cho & Deng Ding & Chao Wang & Jie Wu & Peter Oleynikov & Mei Jia & Jun Cheng & Yi Zhou & Osamu Terasaki & Tianyou Peng & Ling Zan & Hexiang Deng, 2020. "Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction," Nature, Nature, vol. 586(7830), pages 549-554, October.
    5. Joel Y. Y. Loh & Nazir P. Kherani & Geoffrey A. Ozin, 2021. "Persistent CO2 photocatalysis for solar fuels in the dark," Nature Sustainability, Nature, vol. 4(6), pages 466-473, June.
    6. Feiyan Xu & Kai Meng & Bei Cheng & Shengyao Wang & Jingsan Xu & Jiaguo Yu, 2020. "Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. Yanbiao Shi & Jie Li & Chengliang Mao & Song Liu & Xiaobing Wang & Xiufan Liu & Shengxi Zhao & Xiao Liu & Yanqiang Huang & Lizhi Zhang, 2021. "Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Yuehan Cao & Lan Guo & Meng Dan & Dmitry E. Doronkin & Chunqiu Han & Zhiqiang Rao & Yang Liu & Jie Meng & Zeai Huang & Kaibo Zheng & Peng Chen & Fan Dong & Ying Zhou, 2021. "Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Qian Wang & Julien Warnan & Santiago Rodríguez-Jiménez & Jane J. Leung & Shafeer Kalathil & Virgil Andrei & Kazunari Domen & Erwin Reisner, 2020. "Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water," Nature Energy, Nature, vol. 5(9), pages 703-710, September.
    10. Ying Wang & Xiaotong Shang & Jinni Shen & Zizhong Zhang & Debao Wang & Jinjin Lin & Jeffrey C. S. Wu & Xianzhi Fu & Xuxu Wang & Can Li, 2020. "Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong-Jing Zhu & Duan-Hui Si & Hui Guo & Ziao Chen & Rong Cao & Yuan-Biao Huang, 2024. "Oxygen-tolerant CO2 electroreduction over covalent organic frameworks via photoswitching control oxygen passivation strategy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhongshan Chen & Jingyi Wang & Mengjie Hao & Yinghui Xie & Xiaolu Liu & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2023. "Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinfeng Chen & Chengdong Peng & Wenyan Dan & Long Yu & Yinan Wu & Honghan Fei, 2022. "Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Yuan-Sheng Xia & Meizhong Tang & Lei Zhang & Jiang Liu & Cheng Jiang & Guang-Kuo Gao & Long-Zhang Dong & Lan-Gui Xie & Ya-Qian Lan, 2022. "Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Shengyao Wang & Bo Jiang & Joel Henzie & Feiyan Xu & Chengyuan Liu & Xianguang Meng & Sirong Zou & Hui Song & Yang Pan & Hexing Li & Jiaguo Yu & Hao Chen & Jinhua Ye, 2023. "Designing reliable and accurate isotope-tracer experiments for CO2 photoreduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Yao Chai & Yuehua Kong & Min Lin & Wei Lin & Jinni Shen & Jinlin Long & Rusheng Yuan & Wenxin Dai & Xuxu Wang & Zizhong Zhang, 2023. "Metal to non-metal sites of metallic sulfides switching products from CO to CH4 for photocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Yan Shen & Chunjin Ren & Lirong Zheng & Xiaoyong Xu & Ran Long & Wenqing Zhang & Yong Yang & Yongcai Zhang & Yingfang Yao & Haoqiang Chi & Jinlan Wang & Qing Shen & Yujie Xiong & Zhigang Zou & Yong Zh, 2023. "Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Guangyu Liu & Yuan Zhong & Zehua Liu & Gang Wang & Feng Gao & Chao Zhang & Yujie Wang & Hongwei Zhang & Jun Ma & Yangguang Hu & Aobo Chen & Jiangyuan Pan & Yuanzeng Min & Zhiyong Tang & Chao Gao & Yuj, 2024. "Solar-driven sugar production directly from CO2 via a customizable electrocatalytic–biocatalytic flow system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Yajuan Ma & Xiaoxuan Yi & Shaolei Wang & Tao Li & Bien Tan & Chuncheng Chen & Tetsuro Majima & Eric R. Waclawik & Huaiyong Zhu & Jingyu Wang, 2022. "Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Hui Li & Caikun Cheng & Zhijie Yang & Jingjing Wei, 2022. "Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Jin Ming Wang & Qin Yao Zhu & Jeong Heon Lee & Tae Gyun Woo & Yue Xing Zhang & Woo-Dong Jang & Tae Kyu Kim, 2023. "Asymmetric gradient orbital interaction of hetero-diatomic active sites for promoting C − C coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Chaoran Dong & Yilong Yang & Xuemin Hu & Yoonjun Cho & Gyuyong Jang & Yanhui Ao & Luyang Wang & Jinyou Shen & Jong Hyeok Park & Kan Zhang, 2022. "Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Wei-Wei Fang & Gui-Yu Yang & Zi-Hui Fan & Zi-Chao Chen & Xun-Liang Hu & Zhen Zhan & Irshad Hussain & Yang Lu & Tao He & Bi-En Tan, 2023. "Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Yizhou Yang & Yanyan Chen & Fernando Izquierdo-Ruiz & Clara Schäfer & Martin Rahm & Karl Börjesson, 2023. "A self-standing three-dimensional covalent organic framework film," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Wei Zhou & Xiao Wang & Wenling Zhao & Naijia Lu & Die Cong & Zhen Li & Peigeng Han & Guoqing Ren & Lei Sun & Chengcheng Liu & Wei-Qiao Deng, 2023. "Photocatalytic CO2 reduction to syngas using metallosalen covalent organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Tian, Di & Qu, Zhiguo & Zhang, Jianfei, 2023. "Electrochemical condition optimization and techno-economic analysis on the direct CO2 electroreduction of flue gas," Applied Energy, Elsevier, vol. 351(C).
    15. Xiaodong Li & Li Li & Guangbo Chen & Xingyuan Chu & Xiaohui Liu & Chandrasekhar Naisa & Darius Pohl & Markus Löffler & Xinliang Feng, 2023. "Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Chen, Zhangsen & Zhang, Gaixia & Chen, Hangrong & Prakash, Jai & Zheng, Yi & Sun, Shuhui, 2022. "Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Guifeng Ma & Olga A. Syzgantseva & Yan Huang & Dragos Stoian & Jie Zhang & Shuliang Yang & Wen Luo & Mengying Jiang & Shumu Li & Chunjun Chen & Maria A. Syzgantseva & Sen Yan & Ningyu Chen & Li Peng &, 2023. "A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Xin Wang & Boyan Liu & Siqing Ma & Yingjuan Zhang & Lianzhou Wang & Gangqiang Zhu & Wei Huang & Songcan Wang, 2024. "Induced dipole moments in amorphous ZnCdS catalysts facilitate photocatalytic H2 evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Huai Chen & Yangyang Xiong & Jun Li & Jehad Abed & Da Wang & Adrián Pedrazo-Tardajos & Yueping Cao & Yiting Zhang & Ying Wang & Mohsen Shakouri & Qunfeng Xiao & Yongfeng Hu & Sara Bals & Edward H. Sar, 2023. "Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Shenghua Wang & Dake Zhang & Wu Wang & Jun Zhong & Kai Feng & Zhiyi Wu & Boyu Du & Jiaqing He & Zhengwen Li & Le He & Wei Sun & Deren Yang & Geoffrey A. Ozin, 2022. "Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32449-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.