IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32370-5.html
   My bibliography  Save this article

Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT

Author

Listed:
  • S. M. Ayala Mariscal

    (Leibniz Research Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V. (FMP))

  • M. L. Pigazzini

    (Leibniz Research Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V. (FMP)
    Charité Universitätsmedizin Berlin)

  • Y. Richter

    (University of Bremen)

  • M. Özel

    (University of Bremen)

  • I. L. Grothaus

    (University of Bremen
    University of Bremen)

  • J. Protze

    (Leibniz Research Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V. (FMP))

  • K. Ziege

    (Leibniz Research Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V. (FMP))

  • M. Kulke

    (Michigan State University)

  • M. ElBediwi

    (University of Bremen)

  • J. V. Vermaas

    (Michigan State University)

  • L. Colombi Ciacchi

    (University of Bremen
    University of Bremen
    University of Bremen)

  • S. Köppen

    (University of Bremen
    University of Bremen)

  • F. Liu

    (Leibniz Research Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V. (FMP))

  • J. Kirstein

    (Leibniz Research Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V. (FMP)
    University of Bremen)

Abstract

Huntington’s disease is a neurodegenerative disease caused by an expanded polyQ stretch within Huntingtin (HTT) that renders the protein aggregation-prone, ultimately resulting in the formation of amyloid fibrils. A trimeric chaperone complex composed of Hsc70, DNAJB1 and Apg2 can suppress and reverse the aggregation of HTTExon1Q48. DNAJB1 is the rate-limiting chaperone and we have here identified and characterized the binding interface between DNAJB1 and HTTExon1Q48. DNAJB1 exhibits a HTT binding motif (HBM) in the hinge region between C-terminal domains (CTD) I and II and binds to the polyQ-adjacent proline rich domain (PRD) of soluble as well as aggregated HTT. The PRD of HTT represents an additional binding site for chaperones. Mutation of the highly conserved H244 of the HBM of DNAJB1 completely abrogates the suppression and disaggregation of HTT fibrils by the trimeric chaperone complex. Notably, this mutation does not affect the binding and remodeling of any other protein substrate, suggesting that the HBM of DNAJB1 is a specific interaction site for HTT. Overexpression of wt DNAJB1, but not of DNAJB1H244A can prevent the accumulation of HTTExon1Q97 aggregates in HEK293 cells, thus validating the biological significance of the HBM within DNAJB1.

Suggested Citation

  • S. M. Ayala Mariscal & M. L. Pigazzini & Y. Richter & M. Özel & I. L. Grothaus & J. Protze & K. Ziege & M. Kulke & M. ElBediwi & J. V. Vermaas & L. Colombi Ciacchi & S. Köppen & F. Liu & J. Kirstein, 2022. "Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT," Nature Communications, Nature, vol. 13(1), pages 1-25, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32370-5
    DOI: 10.1038/s41467-022-32370-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32370-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32370-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nadinath B. Nillegoda & Janine Kirstein & Anna Szlachcic & Mykhaylo Berynskyy & Antonia Stank & Florian Stengel & Kristin Arnsburg & Xuechao Gao & Annika Scior & Ruedi Aebersold & D. Lys Guilbride & R, 2015. "Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation," Nature, Nature, vol. 524(7564), pages 247-251, August.
    2. Fan Liu & Philip Lössl & Richard Scheltema & Rosa Viner & Albert J. R. Heck, 2017. "Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    3. Anne S. Wentink & Nadinath B. Nillegoda & Jennifer Feufel & Gabrielė Ubartaitė & Carolyn P. Schneider & Paolo De Los Rios & Janosch Hennig & Alessandro Barducci & Bernd Bukau, 2020. "Molecular dissection of amyloid disaggregation by human HSP70," Nature, Nature, vol. 587(7834), pages 483-488, November.
    4. Peter Eastman & Jason Swails & John D Chodera & Robert T McGibbon & Yutong Zhao & Kyle A Beauchamp & Lee-Ping Wang & Andrew C Simmonett & Matthew P Harrigan & Chaya D Stern & Rafal P Wiewiora & Bernar, 2017. "OpenMM 7: Rapid development of high performance algorithms for molecular dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-17, July.
    5. Matthias M. Schneider & Saurabh Gautam & Therese W. Herling & Ewa Andrzejewska & Georg Krainer & Alyssa M. Miller & Victoria A. Trinkaus & Quentin A. E. Peter & Francesco Simone Ruggeri & Michele Vend, 2021. "The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meital Abayev-Avraham & Yehuda Salzberg & Dar Gliksberg & Meital Oren-Suissa & Rina Rosenzweig, 2023. "DNAJB6 mutants display toxic gain of function through unregulated interaction with Hsp70 chaperones," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias M. Schneider & Saurabh Gautam & Therese W. Herling & Ewa Andrzejewska & Georg Krainer & Alyssa M. Miller & Victoria A. Trinkaus & Quentin A. E. Peter & Francesco Simone Ruggeri & Michele Vend, 2021. "The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Eduardo Pinho Melo & Tasuku Konno & Ilaria Farace & Mosab Ali Awadelkareem & Lise R. Skov & Fernando Teodoro & Teresa P. Sancho & Adrienne W. Paton & James C. Paton & Matthew Fares & Pedro M. R. Paulo, 2022. "Stress-induced protein disaggregation in the endoplasmic reticulum catalysed by BiP," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Itika Saha & Patricia Yuste-Checa & Miguel Silva Padilha & Qiang Guo & Roman Körner & Hauke Holthusen & Victoria A. Trinkaus & Irina Dudanova & Rubén Fernández-Busnadiego & Wolfgang Baumeister & David, 2023. "The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Andreas Mardt & Tim Hempel & Cecilia Clementi & Frank Noé, 2022. "Deep learning to decompose macromolecules into independent Markovian domains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Manuel Matzinger & Adrian Vasiu & Mathias Madalinski & Fränze Müller & Florian Stanek & Karl Mechtler, 2022. "Mimicked synthetic ribosomal protein complex for benchmarking crosslinking mass spectrometry workflows," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Shana Bergman & Rosemary J. Cater & Ambrose Plante & Filippo Mancia & George Khelashvili, 2023. "Substrate binding-induced conformational transitions in the omega-3 fatty acid transporter MFSD2A," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Kuang-Ting Ko & Frank Lennartz & David Mekhaiel & Bora Guloglu & Arianna Marini & Danielle J. Deuker & Carole A. Long & Matthijs M. Jore & Kazutoyo Miura & Sumi Biswas & Matthew K. Higgins, 2022. "Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Dezerae Cox & Ching-Seng Ang & Nadinath B. Nillegoda & Gavin E. Reid & Danny M. Hatters, 2022. "Hidden information on protein function in censuses of proteome foldedness," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Hongjun Bai & Eric Lewitus & Yifan Li & Paul V. Thomas & Michelle Zemil & Mélanie Merbah & Caroline E. Peterson & Thujitha Thuraisamy & Phyllis A. Rees & Agnes Hajduczki & Vincent Dussupt & Bonnie Sli, 2024. "Contemporary HIV-1 consensus Env with AI-assisted redesigned hypervariable loops promote antibody binding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Do Hoon Kwon & Feng Zhang & Brett A. McCray & Shasha Feng & Meha Kumar & Jeremy M. Sullivan & Wonpil Im & Charlotte J. Sumner & Seok-Yong Lee, 2023. "TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Ritaban Halder & Daniel A. Nissley & Ian Sitarik & Yang Jiang & Yiyun Rao & Quyen V. Vu & Mai Suan Li & Justin Pritchard & Edward P. O’Brien, 2023. "How soluble misfolded proteins bypass chaperones at the molecular level," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Giacomo Janson & Gilberto Valdes-Garcia & Lim Heo & Michael Feig, 2023. "Direct generation of protein conformational ensembles via machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Sheng Chen & Anuradhika Puri & Braxton Bell & Joseph Fritsche & Hector H. Palacios & Maurie Balch & Macy L. Sprunger & Matthew K. Howard & Jeremy J. Ryan & Jessica N. Haines & Gary J. Patti & Albert A, 2024. "HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Rodrigo G. Fernandez Lahore & Niccolò P. Pampaloni & Enrico Schiewer & M.-Marcel Heim & Linda Tillert & Johannes Vierock & Johannes Oppermann & Jakob Walther & Dietmar Schmitz & David Owald & Andrew J, 2022. "Calcium-permeable channelrhodopsins for the photocontrol of calcium signalling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Yi-Tzu Kuo & Amanda Souza Câmara & Veit Schubert & Pavel Neumann & Jiří Macas & Michael Melzer & Jianyong Chen & Jörg Fuchs & Simone Abel & Evelyn Klocke & Bruno Huettel & Axel Himmelbach & Dmitri Dem, 2023. "Holocentromeres can consist of merely a few megabase-sized satellite arrays," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Nicolas Papadopoulos & Audrey Nédélec & Allison Derenne & Teodor Asvadur Şulea & Christian Pecquet & Ilyas Chachoua & Gaëlle Vertenoeil & Thomas Tilmant & Andrei-Jose Petrescu & Gabriel Mazzucchelli &, 2023. "Oncogenic CALR mutant C-terminus mediates dual binding to the thrombopoietin receptor triggering complex dimerization and activation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Jan Marten Schmidt & Ran Yang & Ashish Kumar & Olivia Hunker & Jan Seebacher & Franziska Bleichert, 2022. "A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32370-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.