IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31750-1.html
   My bibliography  Save this article

Transcriptomic diversity in human medullary thymic epithelial cells

Author

Listed:
  • Jason A. Carter

    (Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory
    Stony Brook University
    University of Washington)

  • Léonie Strömich

    (German Cancer Research Center
    Imperial College London)

  • Matthew Peacey

    (School of Biological Sciences, Cold Spring Harbor Laboratory)

  • Sarah R. Chapin

    (Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory)

  • Lars Velten

    (The Barcelona Institute of Science and Technology
    Universitat Pompeu Fabra (UPF))

  • Lars M. Steinmetz

    (European Molecular Biology Laboratory, Genome Biology Unit
    Stanford University School of Medicine
    Stanford Genome Technology Center)

  • Benedikt Brors

    (German Cancer Research Center)

  • Sheena Pinto

    (German Cancer Research Center)

  • Hannah V. Meyer

    (Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory)

Abstract

The induction of central T cell tolerance in the thymus depends on the presentation of peripheral self-epitopes by medullary thymic epithelial cells (mTECs). This promiscuous gene expression (pGE) drives mTEC transcriptomic diversity, with non-canonical transcript initiation, alternative splicing, and expression of endogenous retroelements (EREs) representing important but incompletely understood contributors. Here we map the expression of genome-wide transcripts in immature and mature human mTECs using high-throughput 5’ cap and RNA sequencing. Both mTEC populations show high splicing entropy, potentially driven by the expression of peripheral splicing factors. During mTEC maturation, rates of global transcript mis-initiation increase and EREs enriched in long terminal repeat retrotransposons are up-regulated, the latter often found in proximity to differentially expressed genes. As a resource, we provide an interactive public interface for exploring mTEC transcriptomic diversity. Our findings therefore help construct a map of transcriptomic diversity in the healthy human thymus and may ultimately facilitate the identification of those epitopes which contribute to autoimmunity and immune recognition of tumor antigens.

Suggested Citation

  • Jason A. Carter & Léonie Strömich & Matthew Peacey & Sarah R. Chapin & Lars Velten & Lars M. Steinmetz & Benedikt Brors & Sheena Pinto & Hannah V. Meyer, 2022. "Transcriptomic diversity in human medullary thymic epithelial cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31750-1
    DOI: 10.1038/s41467-022-31750-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31750-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31750-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brenda Y. Han & Michelle K. Y. Seah & Imogen R. Brooks & Delia H. P. Quek & Dominic R. Huxley & Chuan-Sheng Foo & Li Ting Lee & Heike Wollmann & Huili Guo & Daniel M. Messerschmidt & Ernesto Guccione, 2020. "Global translation during early development depends on the essential transcription factor PRDM10," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Matthieu Giraud & Richard Taubert & Claire Vandiedonck & Xiayi Ke & Matthieu Lévi-Strauss & Franco Pagani & Francisco E. Baralle & Bruno Eymard & Christine Tranchant & Philippe Gajdos & Angela Vincent, 2007. "An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus," Nature, Nature, vol. 448(7156), pages 934-937, August.
    3. Ryan Lister & Mattia Pelizzola & Robert H. Dowen & R. David Hawkins & Gary Hon & Julian Tonti-Filippini & Joseph R. Nery & Leonard Lee & Zhen Ye & Que-Minh Ngo & Lee Edsall & Jessica Antosiewicz-Bourg, 2009. "Human DNA methylomes at base resolution show widespread epigenomic differences," Nature, Nature, vol. 462(7271), pages 315-322, November.
    4. Vicent Pelechano & Wu Wei & Lars M. Steinmetz, 2013. "Extensive transcriptional heterogeneity revealed by isoform profiling," Nature, Nature, vol. 497(7447), pages 127-131, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rakesh Chettier & Lesa Nelson & James W Ogilvie & Hans M Albertsen & Kenneth Ward, 2015. "Haplotypes at LBX1 Have Distinct Inheritance Patterns with Opposite Effects in Adolescent Idiopathic Scoliosis," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-11, February.
    2. Xue Yue & Zhiyuan Xie & Moran Li & Kai Wang & Xiaojing Li & Xiaoqing Zhang & Jian Yan & Yimeng Yin, 2022. "Simultaneous profiling of histone modifications and DNA methylation via nanopore sequencing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Anyou Wang & Ying Du & Qianchuan He & Chunxiao Zhou, 2013. "A Quantitative System for Discriminating Induced Pluripotent Stem Cells, Embryonic Stem Cells and Somatic Cells," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-10, February.
    4. Yu Xiaoqing & Sun Shuying, 2016. "Comparing five statistical methods of differential methylation identification using bisulfite sequencing data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(2), pages 173-191, April.
    5. Allegra Angeloni & Skye Fissette & Deniz Kaya & Jillian M. Hammond & Hasindu Gamaarachchi & Ira W. Deveson & Robert J. Klose & Weiming Li & Xiaotian Zhang & Ozren Bogdanovic, 2024. "Extensive DNA methylome rearrangement during early lamprey embryogenesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Lacey Michelle R. & Baribault Carl & Ehrlich Melanie, 2013. "Modeling, simulation and analysis of methylation profiles from reduced representation bisulfite sequencing experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 723-742, December.
    7. Ruth V. Nichols & Brendan L. O’Connell & Ryan M. Mulqueen & Jerushah Thomas & Ashley R. Woodfin & Sonia Acharya & Gail Mandel & Dmitry Pokholok & Frank J. Steemers & Andrew C. Adey, 2022. "High-throughput robust single-cell DNA methylation profiling with sciMETv2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Ihab Ansari & Llorenç Solé-Boldo & Meshi Ridnik & Julian Gutekunst & Oliver Gilliam & Maria Korshko & Timur Liwinski & Birgit Jickeli & Noa Weinberg-Corem & Michal Shoshkes-Carmel & Eli Pikarsky & Era, 2023. "TET2 and TET3 loss disrupts small intestine differentiation and homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Jamie L. Endicott & Paula A. Nolte & Hui Shen & Peter W. Laird, 2022. "Cell division drives DNA methylation loss in late-replicating domains in primary human cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Sun Shuying & Yu Xiaoqing, 2016. "HMM-Fisher: identifying differential methylation using a hidden Markov model and Fisher’s exact test," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 55-67, March.
    11. Yu Xiaoqing & Sun Shuying, 2016. "HMM-DM: identifying differentially methylated regions using a hidden Markov model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 69-81, March.
    12. Romain O. Georges & Hugo Sepulveda & J. Carlos Angel & Eric Johnson & Susan Palomino & Roberta B. Nowak & Arshad Desai & Isaac F. López-Moyado & Anjana Rao, 2022. "Acute deletion of TET enzymes results in aneuploidy in mouse embryonic stem cells through decreased expression of Khdc3," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Christopher G Bell & Sarah Finer & Cecilia M Lindgren & Gareth A Wilson & Vardhman K Rakyan & Andrew E Teschendorff & Pelin Akan & Elia Stupka & Thomas A Down & Inga Prokopenko & Ian M Morison & Jonat, 2010. "Integrated Genetic and Epigenetic Analysis Identifies Haplotype-Specific Methylation in the FTO Type 2 Diabetes and Obesity Susceptibility Locus," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-12, November.
    14. David Cheishvili & Chifat Wong & Mohammad Mahbubul Karim & Mohammad Golam Kibria & Nusrat Jahan & Pappu Chandra Das & Md. Abul Khair Yousuf & Md. Atikul Islam & Dulal Chandra Das & Sheikh Mohammad Noo, 2023. "A high-throughput test enables specific detection of hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Yongjun Piao & Wanxue Xu & Kwang Ho Park & Keun Ho Ryu & Rong Xiang, 2021. "Comprehensive Evaluation of Differential Methylation Analysis Methods for Bisulfite Sequencing Data," IJERPH, MDPI, vol. 18(15), pages 1-15, July.
    16. Xuelong Yao & Zongyang Lu & Zhanying Feng & Lei Gao & Xin Zhou & Min Li & Suijuan Zhong & Qian Wu & Zhenbo Liu & Haofeng Zhang & Zeyuan Liu & Lizhi Yi & Tao Zhou & Xudong Zhao & Jun Zhang & Yong Wang , 2022. "Comparison of chromatin accessibility landscapes during early development of prefrontal cortex between rhesus macaque and human," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Jian Fang & Jianjun Jiang & Sarah M. Leichter & Jie Liu & Mahamaya Biswal & Nelli Khudaverdyan & Xuehua Zhong & Jikui Song, 2022. "Mechanistic basis for maintenance of CHG DNA methylation in plants," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Singer Meromit & Engström Alexander & Schönhuth Alexander & Pachter Lior, 2011. "Determining Coding CpG Islands by Identifying Regions Significant for Pattern Statistics on Markov Chains," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, September.
    19. Guodong Wu & Nengjun Yi & Devin Absher & Degui Zhi, 2011. "Statistical Quantification of Methylation Levels by Next-Generation Sequencing," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-12, June.
    20. Brendan Evano & Diljeet Gill & Irene Hernando-Herraez & Glenda Comai & Thomas M Stubbs & Pierre-Henri Commere & Wolf Reik & Shahragim Tajbakhsh, 2020. "Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-21, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31750-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.