IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31480-4.html
   My bibliography  Save this article

Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2

Author

Listed:
  • Sarah Willkomm

    (University of Regensburg)

  • Leonhard Jakob

    (University of Regensburg
    University of Regensburg)

  • Kevin Kramm

    (University of Regensburg)

  • Veronika Graus

    (University of Regensburg)

  • Julia Neumeier

    (University of Regensburg)

  • Gunter Meister

    (University of Regensburg)

  • Dina Grohmann

    (University of Regensburg
    University of Regensburg)

Abstract

Human Argonaute 2 (hAgo2) constitutes the functional core of the RNA interference pathway. Guide RNAs direct hAgo2 to target mRNAs, which ultimately leads to hAgo2-mediated mRNA degradation or translational inhibition. Here, we combine site-specifically labeled hAgo2 with time-resolved single-molecule FRET measurements to monitor conformational states and dynamics of hAgo2 and hAgo2-RNA complexes in solution that remained elusive so far. We observe dynamic anchoring and release of the guide’s 3’-end from the PAZ domain during the stepwise target loading process even with a fully complementary target. We find differences in structure and dynamic behavior between partially and fully paired canonical hAgo2-guide/target complexes and the miRNA processing complex formed by hAgo2 and pre-miRNA451. Furthermore, we detect a hitherto unknown conformation of hAgo2-guide/target complexes that poises them for target-directed miRNA degradation. Taken together, our results show how the conformational flexibility of hAgo2-RNA complexes determines function and the fate of the ribonucleoprotein particle.

Suggested Citation

  • Sarah Willkomm & Leonhard Jakob & Kevin Kramm & Veronika Graus & Julia Neumeier & Gunter Meister & Dina Grohmann, 2022. "Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31480-4
    DOI: 10.1038/s41467-022-31480-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31480-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31480-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanli Wang & Stefan Juranek & Haitao Li & Gang Sheng & Greg S. Wardle & Thomas Tuschl & Dinshaw J. Patel, 2009. "Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes," Nature, Nature, vol. 461(7265), pages 754-761, October.
    2. Yanli Wang & Stefan Juranek & Haitao Li & Gang Sheng & Thomas Tuschl & Dinshaw J. Patel, 2008. "Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex," Nature, Nature, vol. 456(7224), pages 921-926, December.
    3. Michael J. Moore & Troels K. H. Scheel & Joseph M. Luna & Christopher Y. Park & John J. Fak & Eiko Nishiuchi & Charles M. Rice & Robert B. Darnell, 2015. "miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity," Nature Communications, Nature, vol. 6(1), pages 1-17, December.
    4. Yanli Wang & Gang Sheng & Stefan Juranek & Thomas Tuschl & Dinshaw J. Patel, 2008. "Structure of the guide-strand-containing argonaute silencing complex," Nature, Nature, vol. 456(7219), pages 209-213, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonghua Wang & Yan Li & Zhi Ma & Wei Yang & Chunzhi Ai, 2010. "Mechanism of MicroRNA-Target Interaction: Molecular Dynamics Simulations and Thermodynamics Analysis," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    2. Hanlun Jiang & Fu Kit Sheong & Lizhe Zhu & Xin Gao & Julie Bernauer & Xuhui Huang, 2015. "Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-21, July.
    3. Xiangkai Zhen & Xiaolong Xu & Le Ye & Song Xie & Zhijie Huang & Sheng Yang & Yanhui Wang & Jinyu Li & Feng Long & Songying Ouyang, 2024. "Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Lidiya Lisitskaya & Yeonoh Shin & Aleksei Agapov & Anna Olina & Ekaterina Kropocheva & Sergei Ryazansky & Alexei A. Aravin & Daria Esyunina & Katsuhiko S. Murakami & Andrey Kulbachinskiy, 2022. "Programmable RNA targeting by bacterial Argonaute nucleases with unconventional guide binding and cleavage specificity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Bidur Paudel & Si-Yeon Jeong & Carolina Pena Martinez & Alexis Rickman & Ashley Haluck-Kangas & Elizabeth T. Bartom & Kristina Fredriksen & Amira Affaneh & John A. Kessler & Joseph R. Mazzulli & Andre, 2024. "Death Induced by Survival gene Elimination (DISE) correlates with neurotoxicity in Alzheimer’s disease and aging," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Xiaohua Yao & Yue Wang & Youhua Yao & Likun An & Yixiong Bai & Xin Li & Kunlun Wu & Youming Qiao, 2021. "Use of gene family analysis to discover argonaut (AGO) genes for increasing the resistance of Tibetan hull-less barley to leaf stripe disease," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 57(3), pages 226-239.
    7. Bin Yang & Haonan Wang & Jilie Kong & Xueen Fang, 2024. "Long-term monitoring of ultratrace nucleic acids using tetrahedral nanostructure-based NgAgo on wearable microneedles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Chikako Ragan & Michael Zuker & Mark A Ragan, 2011. "Quantitative Prediction of miRNA-mRNA Interaction Based on Equilibrium Concentrations," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    9. Yuheng Lu & Christina S Leslie, 2016. "Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-18, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31480-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.