IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31390-5.html
   My bibliography  Save this article

Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome

Author

Listed:
  • Patrick A. Jonge

    (Amsterdam University Medical Centers, Location AMC
    Endocrinology, metabolism and nutrition
    Amsterdam Cardiovascular Sciences, Diabetes & Metabolism)

  • Koen Wortelboer

    (Amsterdam University Medical Centers, Location AMC
    Endocrinology, metabolism and nutrition
    Amsterdam Cardiovascular Sciences, Diabetes & Metabolism)

  • Torsten P. M. Scheithauer

    (Amsterdam University Medical Centers, Location AMC
    Endocrinology, metabolism and nutrition
    Amsterdam Cardiovascular Sciences, Diabetes & Metabolism)

  • Bert-Jan H. Born

    (Amsterdam University Medical Centers, Location AMC
    Endocrinology, metabolism and nutrition
    Amsterdam Cardiovascular Sciences, Diabetes & Metabolism)

  • Aeilko H. Zwinderman

    (Amsterdam University Medical Centers, Location AMC, University of Amsterdam)

  • Franklin L. Nobrega

    (University of Southampton)

  • Bas E. Dutilh

    (Utrecht University
    Friedrich-Schiller-University Jena)

  • Max Nieuwdorp

    (Amsterdam University Medical Centers, Location AMC
    Endocrinology, metabolism and nutrition
    Amsterdam Cardiovascular Sciences, Diabetes & Metabolism)

  • Hilde Herrema

    (Amsterdam University Medical Centers, Location AMC
    Endocrinology, metabolism and nutrition
    Amsterdam Cardiovascular Sciences, Diabetes & Metabolism)

Abstract

There is significant interest in altering the course of cardiometabolic disease development via gut microbiomes. Nevertheless, the highly abundant phage members of the complex gut ecosystem -which impact gut bacteria- remain understudied. Here, we show gut virome changes associated with metabolic syndrome (MetS), a highly prevalent clinical condition preceding cardiometabolic disease, in 196 participants by combined sequencing of bulk whole genome and virus like particle communities. MetS gut viromes exhibit decreased richness and diversity. They are enriched in phages infecting Streptococcaceae and Bacteroidaceae and depleted in those infecting Bifidobacteriaceae. Differential abundance analysis identifies eighteen viral clusters (VCs) as significantly associated with either MetS or healthy viromes. Among these are a MetS-associated Roseburia VC that is related to healthy control-associated Faecalibacterium and Oscillibacter VCs. Further analysis of these VCs revealed the Candidatus Heliusviridae, a highly widespread gut phage lineage found in 90+% of participants. The identification of the temperate Ca. Heliusviridae provides a starting point to studies of phage effects on gut bacteria and the role that this plays in MetS.

Suggested Citation

  • Patrick A. Jonge & Koen Wortelboer & Torsten P. M. Scheithauer & Bert-Jan H. Born & Aeilko H. Zwinderman & Franklin L. Nobrega & Bas E. Dutilh & Max Nieuwdorp & Hilde Herrema, 2022. "Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31390-5
    DOI: 10.1038/s41467-022-31390-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31390-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31390-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lawrence A. David & Corinne F. Maurice & Rachel N. Carmody & David B. Gootenberg & Julie E. Button & Benjamin E. Wolfe & Alisha V. Ling & A. Sloan Devlin & Yug Varma & Michael A. Fischbach & Sudha B. , 2014. "Diet rapidly and reproducibly alters the human gut microbiome," Nature, Nature, vol. 505(7484), pages 559-563, January.
    2. Jason Lloyd-Price & Anup Mahurkar & Gholamali Rahnavard & Jonathan Crabtree & Joshua Orvis & A. Brantley Hall & Arthur Brady & Heather H. Creasy & Carrie McCracken & Michelle G. Giglio & Daniel McDona, 2017. "Strains, functions and dynamics in the expanded Human Microbiome Project," Nature, Nature, vol. 550(7674), pages 61-66, October.
    3. Huang Lin & Shyamal Das Peddada, 2020. "Analysis of compositions of microbiomes with bias correction," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Jason Lloyd-Price & Anup Mahurkar & Gholamali Rahnavard & Jonathan Crabtree & Joshua Orvis & A. Brantley Hall & Arthur Brady & Heather H. Creasy & Carrie McCracken & Michelle G. Giglio & Daniel McDona, 2017. "Erratum: Strains, functions and dynamics in the expanded Human Microbiome Project," Nature, Nature, vol. 551(7679), pages 256-256, November.
    5. David Burstein & Christine L. Sun & Christopher T. Brown & Itai Sharon & Karthik Anantharaman & Alexander J. Probst & Brian C. Thomas & Jillian F. Banfield, 2016. "Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    6. Natalya Yutin & Sean Benler & Sergei A. Shmakov & Yuri I. Wolf & Igor Tolstoy & Mike Rayko & Dmitry Antipov & Pavel A. Pevzner & Eugene V. Koonin, 2021. "Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Bas E. Dutilh & Noriko Cassman & Katelyn McNair & Savannah E. Sanchez & Genivaldo G. Z. Silva & Lance Boling & Jeremy J. Barr & Daan R. Speth & Victor Seguritan & Ramy K. Aziz & Ben Felts & Elizabeth , 2014. "A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes," Nature Communications, Nature, vol. 5(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doris Vandeputte & Lindsey Commer & Raul Y. Tito & Gunter Kathagen & João Sabino & Séverine Vermeire & Karoline Faust & Jeroen Raes, 2021. "Temporal variability in quantitative human gut microbiome profiles and implications for clinical research," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Kerstin Thriene & Karin B. Michels, 2023. "Human Gut Microbiota Plasticity throughout the Life Course," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    3. Muntsa Rocafort & David B. Gootenberg & Jesús M. Luévano & Jeffrey M. Paer & Matthew R. Hayward & Juliet T. Bramante & Musie S. Ghebremichael & Jiawu Xu & Zoe H. Rogers & Alexander R. Munoz & Samson O, 2024. "HIV-associated gut microbial alterations are dependent on host and geographic context," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Sang Chul Park & Il-Ho Park & Joong Seob Lee & Sung Min Park & Sung Hun Kang & Seok-Min Hong & Soo-Hwan Byun & Yong Gi Jung & Seok Jin Hong, 2021. "Microbiome of Unilateral Chronic Rhinosinusitis: A Controlled Paired Analysis," IJERPH, MDPI, vol. 18(18), pages 1-16, September.
    5. Louis J. Cohen & Sun M. Han & Pearson Lau & Daniela Guisado & Yupu Liang & Toshiki G. Nakashige & Thamina Ali & David Chiang & Adeeb Rahman & Sean F. Brady, 2022. "Unraveling function and diversity of bacterial lectins in the human microbiome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Benjamin H. Good & Layton B. Rosenfeld, 2023. "Eco-evolutionary feedbacks in the human gut microbiome," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Ying Liao & Yan-Xia Wu & Minzhong Tang & Yi-Wei Chen & Jin-Ru Xie & Yan Du & Tong-Min Wang & Yong-Qiao He & Wen-Qiong Xue & Xiao-Hui Zheng & Qiao-Yun Liu & Mei-Qi Zheng & Yi-Jing Jia & Xia-Ting Tong &, 2024. "Microbes translocation from oral cavity to nasopharyngeal carcinoma in patients," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. María Dolores Ramos-Barbero & Clara Gómez-Gómez & Laura Sala-Comorera & Lorena Rodríguez-Rubio & Sara Morales-Cortes & Elena Mendoza-Barberá & Gloria Vique & Daniel Toribio-Avedillo & Anicet R. Blanch, 2023. "Characterization of crAss-like phage isolates highlights Crassvirales genetic heterogeneity and worldwide distribution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Soo Hwan Byun & Sunki Lee & Sung Hun Kang & Hyo Geun Choi & Seok Jin Hong, 2020. "Cross-Sectional Analysis of the Association between Periodontitis and Cardiovascular Disease Using the Korean Genome and Epidemiology Study Data," IJERPH, MDPI, vol. 17(14), pages 1-12, July.
    10. Samantha L. Peters & Adair L. Borges & Richard J. Giannone & Michael J. Morowitz & Jillian F. Banfield & Robert L. Hettich, 2022. "Experimental validation that human microbiome phages use alternative genetic coding," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Iris Chen & Yogeshwar D Kelkar & Yu Gu & Jie Zhou & Xing Qiu & Hulin Wu, 2017. "High-dimensional linear state space models for dynamic microbial interaction networks," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-20, November.
    12. Joanna F Dipnall & Julie A Pasco & Michael Berk & Lana J Williams & Seetal Dodd & Felice N Jacka & Denny Meyer, 2016. "Into the Bowels of Depression: Unravelling Medical Symptoms Associated with Depression by Applying Machine-Learning Techniques to a Community Based Population Sample," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.
    13. Huimin Ye & Sabrina Borusak & Claudia Eberl & Julia Krasenbrink & Anna S. Weiss & Song-Can Chen & Buck T. Hanson & Bela Hausmann & Craig W. Herbold & Manuel Pristner & Benjamin Zwirzitz & Benedikt War, 2023. "Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Estelle E. Clerc & Jean-Baptiste Raina & Johannes M. Keegstra & Zachary Landry & Sammy Pontrelli & Uria Alcolombri & Bennett S. Lambert & Valerio Anelli & Flora Vincent & Marta Masdeu-Navarro & Andrea, 2023. "Strong chemotaxis by marine bacteria towards polysaccharides is enhanced by the abundant organosulfur compound DMSP," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Robin D Couch & Allyson Dailey & Fatima Zaidi & Karl Navarro & Christopher B Forsyth & Ece Mutlu & Phillip A Engen & Ali Keshavarzian, 2015. "Alcohol Induced Alterations to the Human Fecal VOC Metabolome," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    16. Lingling Wang & Haobin Yao & Daniel C. Morgan & Kam Shing Lau & Suet Yi Leung & Joshua W. K. Ho & Wai K. Leung, 2023. "Altered human gut virome in patients undergoing antibiotics therapy for Helicobacter pylori," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Alice Risely & Kerstin Wilhelm & Tim Clutton-Brock & Marta B. Manser & Simone Sommer, 2021. "Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. Osama Al-Dalahmah & Michael G. Argenziano & Adithya Kannan & Aayushi Mahajan & Julia Furnari & Fahad Paryani & Deborah Boyett & Akshay Save & Nelson Humala & Fatima Khan & Juncheng Li & Hong Lu & Yu S, 2023. "Re-convolving the compositional landscape of primary and recurrent glioblastoma reveals prognostic and targetable tissue states," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Bryan P. Brown & Colin Feng & Ramla F. Tanko & Shameem Z. Jaumdally & Rubina Bunjun & Smritee Dabee & Anna-Ursula Happel & Melanie Gasper & Donald D. Nyangahu & Maricianah Onono & Gonasagrie Nair & Th, 2023. "Copper intrauterine device increases vaginal concentrations of inflammatory anaerobes and depletes lactobacilli compared to hormonal options in a randomized trial," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Hania M. Taha & Alexander N. Slade & Betty Schwartz & Anna E. Arthur, 2022. "A Case–Control Study Examining the Association of Fiber, Fruit, and Vegetable Intake and the Risk of Colorectal Cancer in a Palestinian Population," IJERPH, MDPI, vol. 19(12), pages 1-11, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31390-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.