IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31148-z.html
   My bibliography  Save this article

All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors

Author

Listed:
  • Akhil Dodda

    (Penn State University)

  • Nicholas Trainor

    (Penn State University
    Penn State University)

  • Joan. M. Redwing

    (Penn State University
    Penn State University
    Penn State University)

  • Saptarshi Das

    (Penn State University
    Penn State University
    Penn State University
    Penn State University)

Abstract

In the emerging era of the internet of things (IoT), ubiquitous sensors continuously collect, consume, store, and communicate a huge volume of information which is becoming increasingly vulnerable to theft and misuse. Modern software cryptosystems require extensive computational infrastructure for implementing ciphering algorithms, making them difficult to be adopted by IoT edge sensors that operate with limited hardware resources and at low energy budgets. Here we propose and experimentally demonstrate an “all-in-one” 8 × 8 array of robust, low-power, and bio-inspired crypto engines monolithically integrated with IoT edge sensors based on two-dimensional (2D) memtransistors. Each engine comprises five 2D memtransistors to accomplish sensing and encoding functionalities. The ciphered information is shown to be secure from an eavesdropper with finite resources and access to deep neural networks. Our hardware platform consists of a total of 320 fully integrated monolayer MoS2-based memtransistors and consumes energy in the range of hundreds of picojoules and offers near-sensor security.

Suggested Citation

  • Akhil Dodda & Nicholas Trainor & Joan. M. Redwing & Saptarshi Das, 2022. "All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31148-z
    DOI: 10.1038/s41467-022-31148-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31148-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31148-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas F. Schranghamer & Aaryan Oberoi & Saptarshi Das, 2020. "Graphene memristive synapses for high precision neuromorphic computing," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Amritanand Sebastian & Andrew Pannone & Shiva Subbulakshmi Radhakrishnan & Saptarshi Das, 2019. "Gaussian synapses for probabilistic neural networks," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Stefan Wachter & Dmitry K. Polyushkin & Ole Bethge & Thomas Mueller, 2017. "A microprocessor based on a two-dimensional semiconductor," Nature Communications, Nature, vol. 8(1), pages 1-6, April.
    4. Lukas Mennel & Joanna Symonowicz & Stefan Wachter & Dmitry K. Polyushkin & Aday J. Molina-Mendoza & Thomas Mueller, 2020. "Ultrafast machine vision with 2D material neural network image sensors," Nature, Nature, vol. 579(7797), pages 62-66, March.
    5. J. Feldmann & N. Youngblood & C. D. Wright & H. Bhaskaran & W. H. P. Pernice, 2019. "All-optical spiking neurosynaptic networks with self-learning capabilities," Nature, Nature, vol. 569(7755), pages 208-214, May.
    6. Sarbashis Das & Akhil Dodda & Saptarshi Das, 2019. "A biomimetic 2D transistor for audiomorphic computing," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Amritanand Sebastian & Rahul Pendurthi & Tanushree H. Choudhury & Joan M. Redwing & Saptarshi Das, 2021. "Benchmarking monolayer MoS2 and WS2 field-effect transistors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Mario Lanza & Quentin Smets & Cedric Huyghebaert & Lain-Jong Li, 2020. "Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices," Nature Communications, Nature, vol. 11(1), pages 1-5, December.
    9. Peng Yao & Huaqiang Wu & Bin Gao & Sukru Burc Eryilmaz & Xueyao Huang & Wenqiang Zhang & Qingtian Zhang & Ning Deng & Luping Shi & H.-S. Philip Wong & He Qian, 2017. "Face classification using electronic synapses," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    10. Akhil Dodda & Aaryan Oberoi & Amritanand Sebastian & Tanushree H. Choudhury & Joan M. Redwing & Saptarshi Das, 2020. "Stochastic resonance in MoS2 photodetector," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    11. Shiva Subbulakshmi Radhakrishnan & Amritanand Sebastian & Aaryan Oberoi & Sarbashis Das & Saptarshi Das, 2021. "A biomimetic neural encoder for spiking neural network," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Hao Jiang & Daniel Belkin & Sergey E. Savel’ev & Siyan Lin & Zhongrui Wang & Yunning Li & Saumil Joshi & Rivu Midya & Can Li & Mingyi Rao & Mark Barnell & Qing Wu & J. Joshua Yang & Qiangfei Xia, 2017. "A novel true random number generator based on a stochastic diffusive memristor," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhtasim Ul Karim Sadaf & Najam U Sakib & Andrew Pannone & Harikrishnan Ravichandran & Saptarshi Das, 2023. "A bio-inspired visuotactile neuron for multisensory integration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Chong Li & Xinxin Liao & Zhi-Ke Peng & Guang Meng & Qingbo He, 2023. "Highly sensitive and broadband meta-mechanoreceptor via mechanical frequency-division multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Subir Ghosh & Andrew Pannone & Dipanjan Sen & Akshay Wali & Harikrishnan Ravichandran & Saptarshi Das, 2023. "An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Fakun Wang & Fangchen Hu & Mingjin Dai & Song Zhu & Fangyuan Sun & Ruihuan Duan & Chongwu Wang & Jiayue Han & Wenjie Deng & Wenduo Chen & Ming Ye & Song Han & Bo Qiang & Yuhao Jin & Yunda Chua & Nan C, 2023. "A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yikai Zheng & Harikrishnan Ravichandran & Thomas F. Schranghamer & Nicholas Trainor & Joan M. Redwing & Saptarshi Das, 2022. "Hardware implementation of Bayesian network based on two-dimensional memtransistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Amritanand Sebastian & Rahul Pendurthi & Azimkhan Kozhakhmetov & Nicholas Trainor & Joshua A. Robinson & Joan M. Redwing & Saptarshi Das, 2022. "Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Subir Ghosh & Andrew Pannone & Dipanjan Sen & Akshay Wali & Harikrishnan Ravichandran & Saptarshi Das, 2023. "An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Muhtasim Ul Karim Sadaf & Najam U Sakib & Andrew Pannone & Harikrishnan Ravichandran & Saptarshi Das, 2023. "A bio-inspired visuotactile neuron for multisensory integration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. He-Shan Zhang & Xue-Mei Dong & Zi-Cheng Zhang & Ze-Pu Zhang & Chao-Yi Ban & Zhe Zhou & Cheng Song & Shi-Qi Yan & Qian Xin & Ju-Qing Liu & Yin-Xiang Li & Wei Huang, 2022. "Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Helin Yang & Kwok-Yan Lam & Liang Xiao & Zehui Xiong & Hao Hu & Dusit Niyato & H. Vincent Poor, 2022. "Lead federated neuromorphic learning for wireless edge artificial intelligence," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Xingchen Pang & Yang Wang & Yuyan Zhu & Zhenhan Zhang & Du Xiang & Xun Ge & Haoqi Wu & Yongbo Jiang & Zizheng Liu & Xiaoxian Liu & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Tian Zhang & Xin Guo & Pan Wang & Xinyi Fan & Zichen Wang & Yan Tong & Decheng Wang & Limin Tong & Linjun Li, 2024. "High performance artificial visual perception and recognition with a plasmon-enhanced 2D material neural network," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Sajjad Abdollahramezani & Omid Hemmatyar & Mohammad Taghinejad & Hossein Taghinejad & Alex Krasnok & Ali A. Eftekhar & Christian Teichrib & Sanchit Deshmukh & Mostafa A. El-Sayed & Eric Pop & Matthias, 2022. "Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    13. Ui Yeon Won & Quoc An Vu & Sung Bum Park & Mi Hyang Park & Van Dam Do & Hyun Jun Park & Heejun Yang & Young Hee Lee & Woo Jong Yu, 2023. "Multi-neuron connection using multi-terminal floating–gate memristor for unsupervised learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Fanfan Li & Dingwei Li & Chuanqing Wang & Guolei Liu & Rui Wang & Huihui Ren & Yingjie Tang & Yan Wang & Yitong Chen & Kun Liang & Qi Huang & Mohamad Sawan & Min Qiu & Hong Wang & Bowen Zhu, 2024. "An artificial visual neuron with multiplexed rate and time-to-first-spike coding," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Parshina, Liubov & Novodvorsky, Oleg & Khramova, Olga & Gusev, Dmitriy & Polyakov, Alexander & Mikhalevsky, Vladimir & Cherebilo, Elena, 2021. "Laser synthesis of non-volatile memristor structures based on tantalum oxide thin films," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Bin Gao & Ying Zhou & Qingtian Zhang & Shuanglin Zhang & Peng Yao & Yue Xi & Qi Liu & Meiran Zhao & Wenqiang Zhang & Zhengwu Liu & Xinyi Li & Jianshi Tang & He Qian & Huaqiang Wu, 2022. "Memristor-based analogue computing for brain-inspired sound localization with in situ training," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Xiaoyun Yuan & Yong Wang & Zhihao Xu & Tiankuang Zhou & Lu Fang, 2023. "Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Thushani Silva & Mirette Fawzy & Amirhossein Hasani & Hamidreza Ghanbari & Amin Abnavi & Abdelrahman Askar & Yue Ling & Mohammad Reza Mohammadzadeh & Fahmid Kabir & Ribwar Ahmadi & Miriam Rosin & Kare, 2022. "Ultrasensitive rapid cytokine sensors based on asymmetric geometry two-dimensional MoS2 diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Elena Goi & Steffen Schoenhardt & Min Gu, 2022. "Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31148-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.