IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31061-5.html
   My bibliography  Save this article

Ribosome profiling reveals multiple roles of SecA in cotranslational protein export

Author

Listed:
  • Zikun Zhu

    (California Institute of Technology)

  • Shuai Wang

    (California Institute of Technology
    Stanford University)

  • Shu-ou Shan

    (California Institute of Technology)

Abstract

SecA, an ATPase known to posttranslationally translocate secretory proteins across the bacterial plasma membrane, also binds ribosomes, but the role of SecA’s ribosome interaction has been unclear. Here, we used a combination of ribosome profiling methods to investigate the cotranslational actions of SecA. Our data reveal the widespread accumulation of large periplasmic loops of inner membrane proteins in the cytoplasm during their cotranslational translocation, which are specifically recognized and resolved by SecA in coordination with the proton motive force (PMF). Furthermore, SecA associates with 25% of secretory proteins with highly hydrophobic signal sequences at an early stage of translation and mediates their cotranslational transport. In contrast, the chaperone trigger factor (TF) delays SecA engagement on secretory proteins with weakly hydrophobic signal sequences, thus enforcing a posttranslational mode of their translocation. Our results elucidate the principles of SecA-driven cotranslational protein translocation and reveal a hierarchical network of protein export pathways in bacteria.

Suggested Citation

  • Zikun Zhu & Shuai Wang & Shu-ou Shan, 2022. "Ribosome profiling reveals multiple roles of SecA in cotranslational protein export," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31061-5
    DOI: 10.1038/s41467-022-31061-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31061-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31061-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Jochen Zimmer & Yunsun Nam & Tom A. Rapoport, 2008. "Structure of a complex of the ATPase SecA and the protein-translocation channel," Nature, Nature, vol. 455(7215), pages 936-943, October.
    3. Eunyong Park & Jean-François Ménétret & James C. Gumbart & Steven J. Ludtke & Weikai Li & Andrew Whynot & Tom A. Rapoport & Christopher W. Akey, 2014. "Structure of the SecY channel during initiation of protein translocation," Nature, Nature, vol. 506(7486), pages 102-106, February.
    4. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    5. Günter Kramer & Thomas Rauch & Wolfgang Rist & Sonja Vorderwülbecke & Holger Patzelt & Agnes Schulze-Specking & Nenad Ban & Elke Deuerling & Bernd Bukau, 2002. "L23 protein functions as a chaperone docking site on the ribosome," Nature, Nature, vol. 419(6903), pages 171-174, September.
    6. Riti Gupta & Dmitri Toptygin & Christian M. Kaiser, 2020. "The SecA motor generates mechanical force during protein translocation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Chengying Ma & Xiaofei Wu & Dongjie Sun & Eunyong Park & Marco A. Catipovic & Tom A. Rapoport & Ning Gao & Long Li, 2019. "Structure of the substrate-engaged SecA-SecY protein translocation machine," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    8. Tomoya Tsukazaki & Hiroyuki Mori & Yuka Echizen & Ryuichiro Ishitani & Shuya Fukai & Takeshi Tanaka & Anna Perederina & Dmitry G. Vassylyev & Toshiyuki Kohno & Andrés D. Maturana & Koreaki Ito & Osamu, 2011. "Structure and function of a membrane component SecDF that enhances protein export," Nature, Nature, vol. 474(7350), pages 235-238, June.
    9. Long Li & Eunyong Park & JingJing Ling & Jessica Ingram & Hidde Ploegh & Tom A. Rapoport, 2016. "Crystal structure of a substrate-engaged SecY protein-translocation channel," Nature, Nature, vol. 531(7594), pages 395-399, March.
    10. Elke Deuerling & Agnes Schulze-Specking & Toshifumi Tomoyasu & Axel Mogk & Bernd Bukau, 1999. "Trigger factor and DnaK cooperate in folding of newly synthesized proteins," Nature, Nature, vol. 400(6745), pages 693-696, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Josephine Botsch & Roswitha Junker & Michèle Sorgenfrei & Patricia P. Ogger & Luca Stier & Susanne Gronau & Peter J. Murray & Markus A. Seeger & Brenda A. Schulman & Bastian Bräuning, 2024. "Doa10/MARCH6 architecture interconnects E3 ligase activity with lipid-binding transmembrane channel to regulate SQLE," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Qiufen Chen & Yuanzhao Guo & Jiuhong Jiang & Jing Qu & Li Zhang & Han Wang, 2023. "The Relative Distance Prediction of Transmembrane Protein Surface Residue Based on Improved Residual Networks," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    3. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    4. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Alexander Kroll & Sahasra Ranjan & Martin K. M. Engqvist & Martin J. Lercher, 2023. "A general model to predict small molecule substrates of enzymes based on machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Lisa-Marie Appel & Vedran Franke & Johannes Benedum & Irina Grishkovskaya & Xué Strobl & Anton Polyansky & Gregor Ammann & Sebastian Platzer & Andrea Neudolt & Anna Wunder & Lena Walch & Stefanie Kais, 2023. "The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    14. Maciej K. Kocylowski & Hande Aypek & Wolfgang Bildl & Martin Helmstädter & Philipp Trachte & Bernhard Dumoulin & Sina Wittösch & Lukas Kühne & Ute Aukschun & Carolin Teetzen & Oliver Kretz & Botond Ga, 2022. "A slit-diaphragm-associated protein network for dynamic control of renal filtration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Michael A. Longo & Sunetra Roy & Yue Chen & Karl-Heinz Tomaszowski & Andrew S. Arvai & Jordan T. Pepper & Rebecca A. Boisvert & Selvi Kunnimalaiyaan & Caezanne Keshvani & David Schild & Albino Bacolla, 2023. "RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Zachary C. Drake & Justin T. Seffernick & Steffen Lindert, 2022. "Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Leonardo Betancurt-Anzola & Markel Martínez-Carranza & Marc Delarue & Kelly M. Zatopek & Andrew F. Gardner & Ludovic Sauguet, 2023. "Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Karin Vogel & Tobias Bläske & Marie-Kristin Nagel & Christoph Globisch & Shane Maguire & Lorenz Mattes & Christian Gude & Michael Kovermann & Karin Hauser & Christine Peter & Erika Isono, 2022. "Lipid-mediated activation of plasma membrane-localized deubiquitylating enzymes modulate endosomal trafficking," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Robin Anger & Laetitia Pieulle & Meriam Shahin & Odile Valette & Hugo Guenno & Artemis Kosta & Vladimir Pelicic & Rémi Fronzes, 2023. "Structure of a heteropolymeric type 4 pilus from a monoderm bacterium," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Jie Li & Haonan Zhang & Dongyu Li & Ya-Jun Liu & Edward A. Bayer & Qiu Cui & Yingang Feng & Ping Zhu, 2023. "Structure of the transcription open complex of distinct σI factors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31061-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.