IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31060-6.html
   My bibliography  Save this article

Structural basis for MTA1c-mediated DNA N6-adenine methylation

Author

Listed:
  • Jiyun Chen

    (Xiamen University)

  • Rong Hu

    (Xiamen University)

  • Ying Chen

    (Xiamen University)

  • Xiaofeng Lin

    (Xiamen University)

  • Wenwen Xiang

    (Xiamen University)

  • Hong Chen

    (Xiamen University)

  • Canglin Yao

    (University of California, San Diego)

  • Liang Liu

    (Xiamen University)

Abstract

DNA N6-adenine methylation (6 mA) has recently been found to play a crucial role in epigenetic regulation in eukaryotes. MTA1c, a newly discovered 6 mA methyltransferase complex in ciliates, is composed of MTA1, MTA9, p1 and p2 subunits and specifically methylates ApT dinucleotides, yet its mechanism of action remains unknown. Here, we report the structures of Tetrahymena thermophila MTA1 (TthMTA1), Paramecium tetraurelia MTA9 (PteMTA9)-TthMTA1 binary complex, as well as the structures of TthMTA1-p1-p2 and TthMTA1-p2 complexes in apo, S-adenosyl methionine-bound and S-adenosyl homocysteine-bound states. We show that MTA1 is the catalytically active subunit, p1 and p2 are involved in the formation of substrate DNA-binding channel, and MTA9 plays a structural role in the stabilization of substrate binding. We identify that MTA1 is a cofactor-dependent catalytically active subunit, which exhibits stable SAM-binding activity only after assembly with p2. Our structures and corresponding functional studies provide a more detailed mechanistic understanding of 6 mA methylation.

Suggested Citation

  • Jiyun Chen & Rong Hu & Ying Chen & Xiaofeng Lin & Wenwen Xiang & Hong Chen & Canglin Yao & Liang Liu, 2022. "Structural basis for MTA1c-mediated DNA N6-adenine methylation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31060-6
    DOI: 10.1038/s41467-022-31060-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31060-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31060-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John R. Horton & Clayton B. Woodcock & Sifa B. Opot & Norbert O. Reich & Xing Zhang & Xiaodong Cheng, 2019. "The cell cycle-regulated DNA adenine methyltransferase CcrM opens a bubble at its DNA recognition site," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Tao P. Wu & Tao Wang & Matthew G. Seetin & Yongquan Lai & Shijia Zhu & Kaixuan Lin & Yifei Liu & Stephanie D. Byrum & Samuel G. Mackintosh & Mei Zhong & Alan Tackett & Guilin Wang & Lawrence S. Hon & , 2016. "DNA methylation on N6-adenine in mammalian embryonic stem cells," Nature, Nature, vol. 532(7599), pages 329-333, April.
    3. Xiang Wang & Jing Feng & Yuan Xue & Zeyuan Guan & Delin Zhang & Zhu Liu & Zhou Gong & Qiang Wang & Jinbo Huang & Chun Tang & Tingting Zou & Ping Yin, 2016. "Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex," Nature, Nature, vol. 534(7608), pages 575-578, June.
    4. Da Jia & Renata Z. Jurkowska & Xing Zhang & Albert Jeltsch & Xiaodong Cheng, 2007. "Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation," Nature, Nature, vol. 449(7159), pages 248-251, September.
    5. Yogesh K. Gupta & Siu-Hong Chan & Shuang-yong Xu & Aneel K. Aggarwal, 2015. "Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Luo & Jiacheng Zhang & Jingyi Fei & Shengdong Ke, 2022. "Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Lijun Wang & Jiaqi Wang & Pujiao Yu & Jingyi Feng & Gui-e Xu & Xuan Zhao & Tianhui Wang & H. Immo Lehmann & Guoping Li & Joost P. G. Sluijter & Junjie Xiao, 2022. "METTL14 is required for exercise-induced cardiac hypertrophy and protects against myocardial ischemia-reperfusion injury," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Qiang Luo & Jiezhen Mo & Hao Chen & Zetao Hu & Baihui Wang & Jiabing Wu & Ziyu Liang & Wenhao Xie & Kangxi Du & Maolin Peng & Yingping Li & Tianyang Li & Yangyi Zhang & Xiaoyan Shi & Wen-Hui Shen & Ya, 2022. "Structural insights into molecular mechanism for N6-adenosine methylation by MT-A70 family methyltransferase METTL4," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Belinda Baquero-Pérez & Ivaylo D. Yonchev & Anna Delgado-Tejedor & Rebeca Medina & Mireia Puig-Torrents & Ian Sudbery & Oguzhan Begik & Stuart A. Wilson & Eva Maria Novoa & Juana Díez, 2024. "N6-methyladenosine modification is not a general trait of viral RNA genomes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Gaolian Xu & Hao Yang & Jiani Qiu & Julien Reboud & Linqing Zhen & Wei Ren & Hong Xu & Jonathan M. Cooper & Hongchen Gu, 2023. "Sequence terminus dependent PCR for site-specific mutation and modification detection," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Ádám Sturm & Éva Saskői & Bernadette Hotzi & Anna Tarnóci & János Barna & Ferenc Bodnár & Himani Sharma & Tibor Kovács & Eszter Ari & Nóra Weinhardt & Csaba Kerepesi & András Perczel & Zoltán Ivics & , 2023. "Downregulation of transposable elements extends lifespan in Caenorhabditis elegans," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Huaxia Shi & Ying Xu & Na Tian & Ming Yang & Fu-Sen Liang, 2022. "Inducible and reversible RNA N6-methyladenosine editing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Tianye Zhang & Chaonan Shi & Haichao Hu & Zhuo Zhang & Ziqiong Wang & Zhiqing Chen & Huimin Feng & Peng Liu & Jun Guo & Qisen Lu & Kaili Zhong & ZhiHui Chen & Jiaqian Liu & Jiancheng Yu & Jianping Che, 2022. "N6-methyladenosine RNA modification promotes viral genomic RNA stability and infection," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Segal Mark R, 2008. "Re-Cracking the Nucleosome Positioning Code," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-24, April.
    10. Yan Xu & Zhuowei Zhou & Xinmei Kang & Lijie Pan & Chang Liu & Xiaoqi Liang & Jiajie Chu & Shuai Dong & Yanli Li & Qiuli Liu & Yuetong Sun & Shanshan Yu & Qi Zhang, 2022. "Mettl3-mediated mRNA m6A modification controls postnatal liver development by modulating the transcription factor Hnf4a," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Daniel Ramírez Montero & Humberto Sánchez & Edo Veen & Theo Laar & Belén Solano & John F. X. Diffley & Nynke H. Dekker, 2023. "Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Linfeng Gao & Yiran Guo & Mahamaya Biswal & Jiuwei Lu & Jiekai Yin & Jian Fang & Xinyi Chen & Zengyu Shao & Mengjiang Huang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2022. "Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Katja Hartstock & Nadine A. Kueck & Petr Spacek & Anna Ovcharenko & Sabine Hüwel & Nicolas V. Cornelissen & Amarnath Bollu & Christoph Dieterich & Andrea Rentmeister, 2023. "MePMe-seq: antibody-free simultaneous m6A and m5C mapping in mRNA by metabolic propargyl labeling and sequencing," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    14. Xiang Zhang & Huilong Yin & Xiaofang Zhang & Xunliang Jiang & Yongkang Liu & Haolin Zhang & Yingran Peng & Da Li & Yanping Yu & Jinbao Zhang & Shuli Cheng & Angang Yang & Rui Zhang, 2022. "N6-methyladenosine modification governs liver glycogenesis by stabilizing the glycogen synthase 2 mRNA," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Jiuwei Lu & Yiran Guo & Jiekai Yin & Jianbin Chen & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Yaodong Zhang & Zijian Ma & Changxian Li & Cheng Wang & Wangjie Jiang & Jiang Chang & Sheng Han & Zefa Lu & Zicheng Shao & Yirui Wang & Hongwei Wang & Chenyu Jiao & Dong Wang & Xiaofeng Wu & Hongbing , 2022. "The genomic landscape of cholangiocarcinoma reveals the disruption of post-transcriptional modifiers," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Naoki Kubo & Ryuji Uehara & Shuhei Uemura & Hiroaki Ohishi & Kenjiro Shirane & Hiroyuki Sasaki, 2024. "Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31060-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.