IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31019-7.html
   My bibliography  Save this article

Pixel-level Bayer-type colour router based on metasurfaces

Author

Listed:
  • Xiujuan Zou

    (Nanjing University)

  • Youming Zhang

    (Huawei Technologies Co., Ltd)

  • Ruoyu Lin

    (Nanjing University)

  • Guangxing Gong

    (Nanjing University)

  • Shuming Wang

    (Nanjing University
    Nanjing University
    Collaborative Innovation Center of Advanced Microstructures)

  • Shining Zhu

    (Nanjing University
    Nanjing University
    Collaborative Innovation Center of Advanced Microstructures)

  • Zhenlin Wang

    (Nanjing University
    Collaborative Innovation Center of Advanced Microstructures)

Abstract

The three primary colour model, i.e., red, green, and blue model, based on the colour perception of the human eye, has been widely used in colour imaging. The most common approach for obtaining colour information is to use a Bayer colour filter, which filters colour light with four pixels of an imaging sensor to form an effective colour pixel. However, its energy utilization efficiency and colour collection efficiency are limited to a low level due to the three-channel filtering nature. Here, by employing an inverse-design method, we demonstrate a pixel-level metasurface-based Bayer-type colour router that presents peak colour collection efficiencies of 58%, 59%, and 49% for red, green and blue light, and an average energy utilization efficiency as high as 84% over the visible region (400 nm–700 nm), which is twice as high as that of a commercial Bayer colour filter. Furthermore, by using a 200 µm × 200 µm metasurface-based colour router sample working with a monochromatic imaging sensor, colour imaging is further realized, obtaining an image intensity twice that achieved by a commercial Bayer colour filter. Our work innovates the mechanism of high-efficiency spectrum information acquisition, which is expected to have promising applications in the development of next-generation imaging systems.

Suggested Citation

  • Xiujuan Zou & Youming Zhang & Ruoyu Lin & Guangxing Gong & Shuming Wang & Shining Zhu & Zhenlin Wang, 2022. "Pixel-level Bayer-type colour router based on metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31019-7
    DOI: 10.1038/s41467-022-31019-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31019-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31019-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuming Wang & Pin Chieh Wu & Vin-Cent Su & Yi-Chieh Lai & Cheng Hung Chu & Jia-Wern Chen & Shen-Hung Lu & Ji Chen & Beibei Xu & Chieh-Hsiung Kuan & Tao Li & Shining Zhu & Din Ping Tsai, 2017. "Broadband achromatic optical metasurface devices," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. Xingjie Ni & Alexander V. Kildishev & Vladimir M. Shalaev, 2013. "Metasurface holograms for visible light," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yueqiang Hu & Yuting Jiang & Yi Zhang & Xing Yang & Xiangnian Ou & Ling Li & Xianghong Kong & Xingsi Liu & Cheng-Wei Qiu & Huigao Duan, 2023. "Asymptotic dispersion engineering for ultra-broadband meta-optics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Chia-Hsiang Lin & Shih-Hsiu Huang & Ting-Hsuan Lin & Pin Chieh Wu, 2023. "Metasurface-empowered snapshot hyperspectral imaging with convex/deep (CODE) small-data learning theory," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yueqiang Hu & Yuting Jiang & Yi Zhang & Xing Yang & Xiangnian Ou & Ling Li & Xianghong Kong & Xingsi Liu & Cheng-Wei Qiu & Huigao Duan, 2023. "Asymptotic dispersion engineering for ultra-broadband meta-optics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Zhaoyi Li & Raphaël Pestourie & Joon-Suh Park & Yao-Wei Huang & Steven G. Johnson & Federico Capasso, 2022. "Inverse design enables large-scale high-performance meta-optics reshaping virtual reality," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Qingbin Fan & Weizhu Xu & Xuemei Hu & Wenqi Zhu & Tao Yue & Cheng Zhang & Feng Yan & Lu Chen & Henri J. Lezec & Yanqing Lu & Amit Agrawal & Ting Xu, 2022. "Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Xia Hua & Yujie Wang & Shuming Wang & Xiujuan Zou & You Zhou & Lin Li & Feng Yan & Xun Cao & Shumin Xiao & Din Ping Tsai & Jiecai Han & Zhenlin Wang & Shining Zhu, 2022. "Ultra-compact snapshot spectral light-field imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Junhui Hu & Zeyuan Guo & Jianyang Shi & Xiong Jiang & Qinmiao Chen & Hui Chen & Zhixue He & Qinghai Song & Shumin Xiao & Shaohua Yu & Nan Chi & Chao Shen, 2024. "A metasurface-based full-color circular auto-focusing Airy beam transmitter for stable high-speed underwater wireless optical communications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Claudio U. Hail & Morgan Foley & Ruzan Sokhoyan & Lior Michaeli & Harry A. Atwater, 2023. "High quality factor metasurfaces for two-dimensional wavefront manipulation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Zong-Lin Li & Kun Chen & Fei Li & Zhi-Jun Shi & Qi-Li Sun & Peng-Qi Li & Yu-Gui Peng & Lai-Xin Huang & Guang Yang & Hairong Zheng & Xue-Feng Zhu, 2023. "Decorated bacteria-cellulose ultrasonic metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Huan Lu & Jiwei Zhao & Bin Zheng & Chao Qian & Tong Cai & Erping Li & Hongsheng Chen, 2023. "Eye accommodation-inspired neuro-metasurface focusing," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Georgy Ermolaev & Kirill Voronin & Denis G. Baranov & Vasyl Kravets & Gleb Tselikov & Yury Stebunov & Dmitry Yakubovsky & Sergey Novikov & Andrey Vyshnevyy & Arslan Mazitov & Ivan Kruglov & Sergey Zhu, 2022. "Topological phase singularities in atomically thin high-refractive-index materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Chia-Hsiang Lin & Shih-Hsiu Huang & Ting-Hsuan Lin & Pin Chieh Wu, 2023. "Metasurface-empowered snapshot hyperspectral imaging with convex/deep (CODE) small-data learning theory," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Weihan Li & Qian Ma & Che Liu & Yunfeng Zhang & Xianning Wu & Jiawei Wang & Shizhao Gao & Tianshuo Qiu & Tonghao Liu & Qiang Xiao & Jiaxuan Wei & Ting Ting Gu & Zhize Zhou & Fashuai Li & Qiang Cheng &, 2023. "Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31019-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.