IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29973-3.html
   My bibliography  Save this article

Inverse design enables large-scale high-performance meta-optics reshaping virtual reality

Author

Listed:
  • Zhaoyi Li

    (Harvard University)

  • Raphaël Pestourie

    (Department of Mathematics, Massachusetts Institute of Technology)

  • Joon-Suh Park

    (Harvard University
    Nanophotonics Research Center, Korea Institute of Science and Technology)

  • Yao-Wei Huang

    (Harvard University
    National University of Singapore
    National Yang Ming Chiao Tung University)

  • Steven G. Johnson

    (Department of Mathematics, Massachusetts Institute of Technology)

  • Federico Capasso

    (Harvard University)

Abstract

Meta-optics has achieved major breakthroughs in the past decade; however, conventional forward design faces challenges as functionality complexity and device size scale up. Inverse design aims at optimizing meta-optics design but has been currently limited by expensive brute-force numerical solvers to small devices, which are also difficult to realize experimentally. Here, we present a general inverse-design framework for aperiodic large-scale (20k × 20k λ2) complex meta-optics in three dimensions, which alleviates computational cost for both simulation and optimization via a fast approximate solver and an adjoint method, respectively. Our framework naturally accounts for fabrication constraints via a surrogate model. In experiments, we demonstrate aberration-corrected metalenses working in the visible with high numerical aperture, poly-chromatic focusing, and large diameter up to the centimeter scale. Such large-scale meta-optics opens a new paradigm for applications, and we demonstrate its potential for future virtual-reality platforms by using a meta-eyepiece and a laser back-illuminated micro-Liquid Crystal Display.

Suggested Citation

  • Zhaoyi Li & Raphaël Pestourie & Joon-Suh Park & Yao-Wei Huang & Steven G. Johnson & Federico Capasso, 2022. "Inverse design enables large-scale high-performance meta-optics reshaping virtual reality," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29973-3
    DOI: 10.1038/s41467-022-29973-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29973-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29973-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gun-Yeal Lee & Jong-Young Hong & SoonHyoung Hwang & Seokil Moon & Hyeokjung Kang & Sohee Jeon & Hwi Kim & Jun-Ho Jeong & Byoungho Lee, 2018. "Metasurface eyepiece for augmented reality," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Shuming Wang & Pin Chieh Wu & Vin-Cent Su & Yi-Chieh Lai & Cheng Hung Chu & Jia-Wern Chen & Shen-Hung Lu & Ji Chen & Beibei Xu & Chieh-Hsiung Kuan & Tao Li & Shining Zhu & Din Ping Tsai, 2017. "Broadband achromatic optical metasurface devices," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    3. Wei Ting Chen & Alexander Y. Zhu & Jared Sisler & Zameer Bharwani & Federico Capasso, 2019. "A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    4. Ethan Tseng & Shane Colburn & James Whitehead & Luocheng Huang & Seung-Hwan Baek & Arka Majumdar & Felix Heide, 2021. "Neural nano-optics for high-quality thin lens imaging," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Li Zhang & Jun Ding & Hanyu Zheng & Sensong An & Hongtao Lin & Bowen Zheng & Qingyang Du & Gufan Yin & Jerome Michon & Yifei Zhang & Zhuoran Fang & Mikhail Y. Shalaginov & Longjiang Deng & Tian Gu & H, 2018. "Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    6. MohammadSadegh Faraji-Dana & Ehsan Arbabi & Amir Arbabi & Seyedeh Mahsa Kamali & Hyounghan Kwon & Andrei Faraon, 2018. "Compact folded metasurface spectrometer," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    7. Constantin Dory & Dries Vercruysse & Ki Youl Yang & Neil V. Sapra & Alison E. Rugar & Shuo Sun & Daniil M. Lukin & Alexander Y. Piggott & Jingyuan L. Zhang & Marina Radulaski & Konstantinos G. Lagouda, 2019. "Inverse-designed diamond photonics," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corey A. Richards & Christian R. Ocier & Dajie Xie & Haibo Gao & Taylor Robertson & Lynford L. Goddard & Rasmus E. Christiansen & David G. Cahill & Paul V. Braun, 2023. "Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yueqiang Hu & Yuting Jiang & Yi Zhang & Xing Yang & Xiangnian Ou & Ling Li & Xianghong Kong & Xingsi Liu & Cheng-Wei Qiu & Huigao Duan, 2023. "Asymptotic dispersion engineering for ultra-broadband meta-optics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Brandon Born & Sung-Hoon Lee & Jung-Hwan Song & Jeong Yub Lee & Woong Ko & Mark L. Brongersma, 2023. "Off-axis metasurfaces for folded flat optics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Gang Wu & Mohamed Abid & Mohamed Zerara & Jiung Cho & Miri Choi & Cormac Ó Coileáin & Kuan-Ming Hung & Ching-Ray Chang & Igor V. Shvets & Han-Chun Wu, 2024. "Miniaturized spectrometer with intrinsic long-term image memory," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Huan Lu & Jiwei Zhao & Bin Zheng & Chao Qian & Tong Cai & Erping Li & Hongsheng Chen, 2023. "Eye accommodation-inspired neuro-metasurface focusing," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Okan Atalar & Raphaël Laer & Amir H. Safavi-Naeini & Amin Arbabian, 2022. "Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Minkyung Kim & Dasol Lee & Younghwan Yang & Yeseul Kim & Junsuk Rho, 2022. "Reaching the highest efficiency of spin Hall effect of light in the near-infrared using all-dielectric metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Fei Zhang & Yinghui Guo & Mingbo Pu & Lianwei Chen & Mingfeng Xu & Minghao Liao & Lanting Li & Xiong Li & Xiaoliang Ma & Xiangang Luo, 2023. "Meta-optics empowered vector visual cryptography for high security and rapid decryption," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Qingbin Fan & Weizhu Xu & Xuemei Hu & Wenqi Zhu & Tao Yue & Cheng Zhang & Feng Yan & Lu Chen & Henri J. Lezec & Yanqing Lu & Amit Agrawal & Ting Xu, 2022. "Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Xia Hua & Yujie Wang & Shuming Wang & Xiujuan Zou & You Zhou & Lin Li & Feng Yan & Xun Cao & Shumin Xiao & Din Ping Tsai & Jiecai Han & Zhenlin Wang & Shining Zhu, 2022. "Ultra-compact snapshot spectral light-field imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Xiujuan Zou & Youming Zhang & Ruoyu Lin & Guangxing Gong & Shuming Wang & Shining Zhu & Zhenlin Wang, 2022. "Pixel-level Bayer-type colour router based on metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Un Jeong Kim & Suyeon Lee & Hyochul Kim & Yeongeun Roh & Seungju Han & Hojung Kim & Yeonsang Park & Seokin Kim & Myung Jin Chung & Hyungbin Son & Hyuck Choo, 2023. "Drug classification with a spectral barcode obtained with a smartphone Raman spectrometer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Yangxi Zhang & Sheng Zhang & Hao Wu & Jinhui Wang & Guang Lin & A. Ping Zhang, 2024. "Miniature computational spectrometer with a plasmonic nanoparticles-in-cavity microfilter array," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Julian Karst & Yohan Lee & Moritz Floess & Monika Ubl & Sabine Ludwigs & Mario Hentschel & Harald Giessen, 2022. "Electro-active metaobjective from metalenses-on-demand," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Akter, Shahriar & Dwivedi, Yogesh K. & Sajib, Shahriar & Biswas, Kumar & Bandara, Ruwan J. & Michael, Katina, 2022. "Algorithmic bias in machine learning-based marketing models," Journal of Business Research, Elsevier, vol. 144(C), pages 201-216.
    18. Yuanlong Zhang & Xiaofei Song & Jiachen Xie & Jing Hu & Jiawei Chen & Xiang Li & Haiyu Zhang & Qiqun Zhou & Lekang Yuan & Chui Kong & Yibing Shen & Jiamin Wu & Lu Fang & Qionghai Dai, 2023. "Large depth-of-field ultra-compact microscope by progressive optimization and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Chia-Hsiang Lin & Shih-Hsiu Huang & Ting-Hsuan Lin & Pin Chieh Wu, 2023. "Metasurface-empowered snapshot hyperspectral imaging with convex/deep (CODE) small-data learning theory," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Michele Cotrufo & Akshaj Arora & Sahitya Singh & Andrea Alù, 2023. "Dispersion engineered metasurfaces for broadband, high-NA, high-efficiency, dual-polarization analog image processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29973-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.