IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30792-9.html
   My bibliography  Save this article

Large-scale multi-omics analysis suggests specific roles for intragenic cohesin in transcriptional regulation

Author

Listed:
  • Jiankang Wang

    (The University of Tokyo
    The University of Tokyo)

  • Masashige Bando

    (The University of Tokyo)

  • Katsuhiko Shirahige

    (The University of Tokyo
    The University of Tokyo
    Karolinska Institutet)

  • Ryuichiro Nakato

    (The University of Tokyo
    The University of Tokyo)

Abstract

Cohesin, an essential protein complex for chromosome segregation, regulates transcription through a variety of mechanisms. It is not a trivial task to assign diverse cohesin functions. Moreover, the context-specific roles of cohesin-mediated interactions, especially on intragenic regions, have not been thoroughly investigated. Here we perform a comprehensive characterization of cohesin binding sites in several human cell types. We integrate epigenomic, transcriptomic and chromatin interaction data to explore the context-specific functions of intragenic cohesin related to gene activation. We identify a specific subset of cohesin binding sites, decreased intragenic cohesin sites (DICs), which are negatively correlated with transcriptional regulation. A subgroup of DICs is enriched with enhancer markers and RNA polymerase II, while the others are more correlated to chromatin architecture. DICs are observed in various cell types, including cells from patients with cohesinopathy. We also implement machine learning to our data and identified genomic features for isolating DICs from all cohesin sites. These results suggest a previously unidentified function of cohesin on intragenic regions for transcriptional regulation.

Suggested Citation

  • Jiankang Wang & Masashige Bando & Katsuhiko Shirahige & Ryuichiro Nakato, 2022. "Large-scale multi-omics analysis suggests specific roles for intragenic cohesin in transcriptional regulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30792-9
    DOI: 10.1038/s41467-022-30792-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30792-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30792-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Georg A. Busslinger & Roman R. Stocsits & Petra van der Lelij & Elin Axelsson & Antonio Tedeschi & Niels Galjart & Jan-Michael Peters, 2017. "Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl," Nature, Nature, vol. 544(7651), pages 503-507, April.
    2. Kerstin S. Wendt & Keisuke Yoshida & Takehiko Itoh & Masashige Bando & Birgit Koch & Erika Schirghuber & Shuichi Tsutsumi & Genta Nagae & Ko Ishihara & Tsuyoshi Mishiro & Kazuhide Yahata & Fumio Imamo, 2008. "Cohesin mediates transcriptional insulation by CCCTC-binding factor," Nature, Nature, vol. 451(7180), pages 796-801, February.
    3. Robin Andersson & Claudia Gebhard & Irene Miguel-Escalada & Ilka Hoof & Jette Bornholdt & Mette Boyd & Yun Chen & Xiaobei Zhao & Christian Schmidl & Takahiro Suzuki & Evgenia Ntini & Erik Arner & Eivi, 2014. "An atlas of active enhancers across human cell types and tissues," Nature, Nature, vol. 507(7493), pages 455-461, March.
    4. Michael H. Kagey & Jamie J. Newman & Steve Bilodeau & Ye Zhan & David A. Orlando & Nynke L. van Berkum & Christopher C. Ebmeier & Jesse Goossens & Peter B. Rahl & Stuart S. Levine & Dylan J. Taatjes &, 2010. "Mediator and cohesin connect gene expression and chromatin architecture," Nature, Nature, vol. 467(7314), pages 430-435, September.
    5. Francesco Neri & Stefania Rapelli & Anna Krepelova & Danny Incarnato & Caterina Parlato & Giulia Basile & Mara Maldotti & Francesca Anselmi & Salvatore Oliviero, 2017. "Intragenic DNA methylation prevents spurious transcription initiation," Nature, Nature, vol. 543(7643), pages 72-77, March.
    6. Sanjeev Shukla & Ersen Kavak & Melissa Gregory & Masahiko Imashimizu & Bojan Shutinoski & Mikhail Kashlev & Philipp Oberdoerffer & Rickard Sandberg & Shalini Oberdoerffer, 2011. "CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing," Nature, Nature, vol. 479(7371), pages 74-79, November.
    7. Timothy J. Stasevich & Yoko Hayashi-Takanaka & Yuko Sato & Kazumitsu Maehara & Yasuyuki Ohkawa & Kumiko Sakata-Sogawa & Makio Tokunaga & Takahiro Nagase & Naohito Nozaki & James G. McNally & Hiroshi K, 2014. "Regulation of RNA polymerase II activation by histone acetylation in single living cells," Nature, Nature, vol. 516(7530), pages 272-275, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryuichiro Nakato & Toyonori Sakata & Jiankang Wang & Luis Augusto Eijy Nagai & Yuya Nagaoka & Gina Miku Oba & Masashige Bando & Katsuhiko Shirahige, 2023. "Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Chirag Nepal & Jesper B. Andersen, 2023. "Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Alexandra D’Oto & Jie Fang & Hongjian Jin & Beisi Xu & Shivendra Singh & Anoushka Mullasseril & Victoria Jones & Ahmed Abu-Zaid & Xinyu Buttlar & Bailey Cooke & Dongli Hu & Jason Shohet & Andrew J. Mu, 2021. "KDM6B promotes activation of the oncogenic CDK4/6-pRB-E2F pathway by maintaining enhancer activity in MYCN-amplified neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    4. Daniel Bsteh & Hagar F. Moussa & Georg Michlits & Ramesh Yelagandula & Jingkui Wang & Ulrich Elling & Oliver Bell, 2023. "Loss of cohesin regulator PDS5A reveals repressive role of Polycomb loops," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Silvia Peripolli & Leticia Meneguello & Chiara Perrod & Tanya Singh & Harshil Patel & Sazia T. Rahman & Koshiro Kiso & Peter Thorpe & Vincenzo Calvanese & Cosetta Bertoli & Robertus A. M. de Bruin, 2024. "Oncogenic c-Myc induces replication stress by increasing cohesins chromatin occupancy in a CTCF-dependent manner," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Annkatrin Bressin & Olga Jasnovidova & Mirjam Arnold & Elisabeth Altendorfer & Filip Trajkovski & Thomas A. Kratz & Joanna E. Handzlik & Denes Hnisz & Andreas Mayer, 2023. "High-sensitive nascent transcript sequencing reveals BRD4-specific control of widespread enhancer and target gene transcription," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Kosuke Tomimatsu & Takeru Fujii & Ryoma Bise & Kazufumi Hosoda & Yosuke Taniguchi & Hiroshi Ochiai & Hiroaki Ohishi & Kanta Ando & Ryoma Minami & Kaori Tanaka & Taro Tachibana & Seiichi Mori & Akihito, 2024. "Precise immunofluorescence canceling for highly multiplexed imaging to capture specific cell states," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Bingnan Li & Patrice Zeis & Yujie Zhang & Alisa Alekseenko & Eliska Fürst & Yerma Pareja Sanchez & Gen Lin & Manu M. Tekkedil & Ilaria Piazza & Lars M. Steinmetz & Vicent Pelechano, 2023. "Differential regulation of mRNA stability modulates transcriptional memory and facilitates environmental adaptation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Julia Minderjahn & Alexander Fischer & Konstantin Maier & Karina Mendes & Margit Nuetzel & Johanna Raithel & Hanna Stanewsky & Ute Ackermann & Robert Månsson & Claudia Gebhard & Michael Rehli, 2022. "Postmitotic differentiation of human monocytes requires cohesin-structured chromatin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Duc-Hau Le, 2021. "A network-based method for predicting disease-associated enhancers," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-20, December.
    11. Hiroaki Ohishi & Seiru Shimada & Satoshi Uchino & Jieru Li & Yuko Sato & Manabu Shintani & Hitoshi Owada & Yasuyuki Ohkawa & Alexandros Pertsinidis & Takashi Yamamoto & Hiroshi Kimura & Hiroshi Ochiai, 2022. "STREAMING-tag system reveals spatiotemporal relationships between transcriptional regulatory factors and transcriptional activity," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Pedro L. Baldoni & Naim U. Rashid & Joseph G. Ibrahim, 2022. "Efficient detection and classification of epigenomic changes under multiple conditions," Biometrics, The International Biometric Society, vol. 78(3), pages 1141-1154, September.
    13. Milton Pividori & Sumei Lu & Binglan Li & Chun Su & Matthew E. Johnson & Wei-Qi Wei & Qiping Feng & Bahram Namjou & Krzysztof Kiryluk & Iftikhar J. Kullo & Yuan Luo & Blair D. Sullivan & Benjamin F. V, 2023. "Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Charley Xia & Sarah J. Pickett & David C. M. Liewald & Alexander Weiss & Gavin Hudson & W. David Hill, 2023. "The contributions of mitochondrial and nuclear mitochondrial genetic variation to neuroticism," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Dácil Alonso-Gil & Ana Cuadrado & Daniel Giménez-Llorente & Miriam Rodríguez-Corsino & Ana Losada, 2023. "Different NIPBL requirements of cohesin-STAG1 and cohesin-STAG2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Kota Hamamoto & Yusuke Umemura & Shiho Makino & Takashi Fukaya, 2023. "Dynamic interplay between non-coding enhancer transcription and gene activity in development," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Parker C. Wilson & Yoshiharu Muto & Haojia Wu & Anil Karihaloo & Sushrut S. Waikar & Benjamin D. Humphreys, 2022. "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    18. Dominic D. G. Owens & Giorgio Anselmi & A. Marieke Oudelaar & Damien J. Downes & Alessandro Cavallo & Joe R. Harman & Ron Schwessinger & Akin Bucakci & Lucas Greder & Sara Ornellas & Danuta Jeziorska , 2022. "Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Xavier Contreras & David Depierre & Charbel Akkawi & Marina Srbic & Marion Helsmoortel & Maguelone Nogaret & Matthieu LeHars & Kader Salifou & Alexandre Heurteau & Olivier Cuvier & Rosemary Kiernan, 2023. "PAPγ associates with PAXT nuclear exosome to control the abundance of PROMPT ncRNAs," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Romain O. Georges & Hugo Sepulveda & J. Carlos Angel & Eric Johnson & Susan Palomino & Roberta B. Nowak & Arshad Desai & Isaac F. López-Moyado & Anjana Rao, 2022. "Acute deletion of TET enzymes results in aneuploidy in mouse embryonic stem cells through decreased expression of Khdc3," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30792-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.