IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29831-2.html
   My bibliography  Save this article

Electrically tunable collective motion of dissipative solitons in chiral nematic films

Author

Listed:
  • Yuan Shen

    (University of Manchester)

  • Ingo Dierking

    (University of Manchester)

Abstract

From the motion of fish and birds, to migrating herds of ungulates, collective motion has attracted people for centuries. Active soft matter exhibits a plethora of emergent dynamic behaviors that mimic those of biological systems. Here we introduce an active system composed of dynamic dissipative solitons, i.e. directrons, which mimics the collective motion of living systems. Although the directrons are inanimate, artificial particle-like solitonic field configurations, they locally align their motions like their biological counterparts. Driven by external electric fields, hundreds of directrons are generated in a chiral nematic film. They start with random motions but self-organize into flocks and synchronize their motions. The directron flocks exhibit rich dynamic behaviors and induce population density fluctuations far larger than those in thermal equilibrium systems. They exhibit “turbulent” swimming patterns manifested by transient vortices and jets. They even distinguish topological defects, heading towards defects of positive topological strength and avoiding negative ones.

Suggested Citation

  • Yuan Shen & Ingo Dierking, 2022. "Electrically tunable collective motion of dissipative solitons in chiral nematic films," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29831-2
    DOI: 10.1038/s41467-022-29831-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29831-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29831-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Bing-Xiang Li & Volodymyr Borshch & Rui-Lin Xiao & Sathyanarayana Paladugu & Taras Turiv & Sergij V. Shiyanovskii & Oleg D. Lavrentovich, 2018. "Publisher Correction: Electrically driven three-dimensional solitary waves as director bullets in nematic liquid crystals," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    3. Tim Sanchez & Daniel T. N. Chen & Stephen J. DeCamp & Michael Heymann & Zvonimir Dogic, 2012. "Spontaneous motion in hierarchically assembled active matter," Nature, Nature, vol. 491(7424), pages 431-434, November.
    4. Bing-Xiang Li & Rui-Lin Xiao & Sathyanarayana Paladugu & Sergij V. Shiyanovskii & Oleg D. Lavrentovich, 2019. "Three-dimensional solitary waves with electrically tunable direction of propagation in nematics," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Hayley R. O. Sohn & Changda D. Liu & Ivan I. Smalyukh, 2019. "Schools of skyrmions with electrically tunable elastic interactions," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. M. W. Ray & E. Ruokokoski & S. Kandel & M. Möttönen & D. S. Hall, 2014. "Observation of Dirac monopoles in a synthetic magnetic field," Nature, Nature, vol. 505(7485), pages 657-660, January.
    7. Satoshi Aya & Fumito Araoka, 2020. "Kinetics of motile solitons in nematic liquid crystals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. X. Z. Yu & Y. Onose & N. Kanazawa & J. H. Park & J. H. Han & Y. Matsui & N. Nagaosa & Y. Tokura, 2010. "Real-space observation of a two-dimensional skyrmion crystal," Nature, Nature, vol. 465(7300), pages 901-904, June.
    9. Paul J. Ackerman & Timothy Boyle & Ivan I. Smalyukh, 2017. "Squirming motion of baby skyrmions in nematic fluids," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    10. Bing-Xiang Li & Volodymyr Borshch & Rui-Lin Xiao & Sathyanarayana Paladugu & Taras Turiv & Sergij V. Shiyanovskii & Oleg D. Lavrentovich, 2018. "Electrically driven three-dimensional solitary waves as director bullets in nematic liquid crystals," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    11. Antoine Bricard & Jean-Baptiste Caussin & Nicolas Desreumaux & Olivier Dauchot & Denis Bartolo, 2013. "Emergence of macroscopic directed motion in populations of motile colloids," Nature, Nature, vol. 503(7474), pages 95-98, November.
    12. Juliane U. Klamser & Sebastian C. Kapfer & Werner Krauth, 2018. "Thermodynamic phases in two-dimensional active matter," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Bibi Najma & Minu Varghese & Lev Tsidilkovski & Linnea Lemma & Aparna Baskaran & Guillaume Duclos, 2022. "Competing instabilities reveal how to rationally design and control active crosslinked gels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Bo Zhang & Andreas Glatz & Igor S. Aranson & Alexey Snezhko, 2023. "Spontaneous shock waves in pulse-stimulated flocks of Quincke rollers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Zafer, Aytürk Hamdi & Akguc, Gursoy B., 2022. "Feedback and reactive flow effects on living crystal formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    5. Hikaru Takeda & Masataka Kawano & Kyo Tamura & Masatoshi Akazawa & Jian Yan & Takeshi Waki & Hiroyuki Nakamura & Kazuki Sato & Yasuo Narumi & Masayuki Hagiwara & Minoru Yamashita & Chisa Hotta, 2024. "Magnon thermal Hall effect via emergent SU(3) flux on the antiferromagnetic skyrmion lattice," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Jung-Shen B. Tai & Jin-Sheng Wu & Ivan I. Smalyukh, 2022. "Geometric transformation and three-dimensional hopping of Hopf solitons," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    8. Maxime Hubert & Stéphane Perrard & Nicolas Vandewalle & Matthieu Labousse, 2022. "Overload wave-memory induces amnesia of a self-propelled particle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    10. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    11. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    12. Lukas Hecht & Iris Dong & Benno Liebchen, 2024. "Motility-induced coexistence of a hot liquid and a cold gas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    14. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    15. Satoru Hayami & Tsuyoshi Okubo & Yukitoshi Motome, 2021. "Phase shift in skyrmion crystals," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    16. Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
    17. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    18. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    19. Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
    20. Mohammed Mahmod Shuaib, 2016. "Modeling the Pedestrian Ability of Detecting Lanes and Lane Changing Behavior," Modern Applied Science, Canadian Center of Science and Education, vol. 10(7), pages 1-1, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29831-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.