IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29599-5.html
   My bibliography  Save this article

Anopheles mosquitoes reveal new principles of 3D genome organization in insects

Author

Listed:
  • Varvara Lukyanchikova

    (Virginia Polytechnic Institute and State University
    Virginia Polytechnic Institute and State University
    Institute of Cytology and Genetics SB RAS
    Novosibirsk State University)

  • Miroslav Nuriddinov

    (Institute of Cytology and Genetics SB RAS
    Novosibirsk State University)

  • Polina Belokopytova

    (Institute of Cytology and Genetics SB RAS
    Novosibirsk State University)

  • Alena Taskina

    (Institute of Cytology and Genetics SB RAS
    Novosibirsk State University)

  • Jiangtao Liang

    (Virginia Polytechnic Institute and State University
    Virginia Polytechnic Institute and State University)

  • Maarten J. M. F. Reijnders

    (University of Lausanne and Swiss Institute of Bioinformatics)

  • Livio Ruzzante

    (University of Lausanne and Swiss Institute of Bioinformatics)

  • Romain Feron

    (University of Lausanne and Swiss Institute of Bioinformatics)

  • Robert M. Waterhouse

    (University of Lausanne and Swiss Institute of Bioinformatics)

  • Yang Wu

    (Virginia Polytechnic Institute and State University
    Virginia Polytechnic Institute and State University
    Southern Medical University)

  • Chunhong Mao

    (University of Virginia)

  • Zhijian Tu

    (Virginia Polytechnic Institute and State University
    Virginia Polytechnic Institute and State University)

  • Igor V. Sharakhov

    (Virginia Polytechnic Institute and State University
    Virginia Polytechnic Institute and State University
    Tomsk State University)

  • Veniamin Fishman

    (Institute of Cytology and Genetics SB RAS
    Novosibirsk State University
    AIRI)

Abstract

Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for ~100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.

Suggested Citation

  • Varvara Lukyanchikova & Miroslav Nuriddinov & Polina Belokopytova & Alena Taskina & Jiangtao Liang & Maarten J. M. F. Reijnders & Livio Ruzzante & Romain Feron & Robert M. Waterhouse & Yang Wu & Chunh, 2022. "Anopheles mosquitoes reveal new principles of 3D genome organization in insects," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29599-5
    DOI: 10.1038/s41467-022-29599-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29599-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29599-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Mascher & Heidrun Gundlach & Axel Himmelbach & Sebastian Beier & Sven O. Twardziok & Thomas Wicker & Volodymyr Radchuk & Christoph Dockter & Pete E. Hedley & Joanne Russell & Micha Bayer & Luke, 2017. "A chromosome conformation capture ordered sequence of the barley genome," Nature, Nature, vol. 544(7651), pages 427-433, April.
    2. Alexej Abyzov & Shantao Li & Daniel Rhee Kim & Marghoob Mohiyuddin & Adrian M. Stütz & Nicholas F. Parrish & Xinmeng Jasmine Mu & Wyatt Clark & Ken Chen & Matthew Hurles & Jan O. Korbel & Hugo Y. K. L, 2015. "Analysis of deletion breakpoints from 1,092 humans reveals details of mutation mechanisms," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    3. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    4. Nathan Harmston & Elizabeth Ing-Simmons & Ge Tan & Malcolm Perry & Matthias Merkenschlager & Boris Lenhard, 2017. "Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    5. Qi Wang & Qiu Sun & Daniel M. Czajkowsky & Zhifeng Shao, 2018. "Sub-kb Hi-C in D. melanogaster reveals conserved characteristics of TADs between insect and mammalian cells," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    6. Ilya M. Flyamer & Johanna Gassler & Maxim Imakaev & Hugo B. Brandão & Sergey V. Ulianov & Nezar Abdennur & Sergey V. Razin & Leonid A. Mirny & Kikuë Tachibana-Konwalski, 2017. "Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition," Nature, Nature, vol. 544(7648), pages 110-114, April.
    7. Anjali Kaushal & Giriram Mohana & Julien Dorier & Isa Özdemir & Arina Omer & Pascal Cousin & Anastasiia Semenova & Michael Taschner & Oleksandr Dergai & Flavia Marzetta & Christian Iseli & Yossi Eliaz, 2021. "CTCF loss has limited effects on global genome architecture in Drosophila despite critical regulatory functions," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    8. Wibke Schwarzer & Nezar Abdennur & Anton Goloborodko & Aleksandra Pekowska & Geoffrey Fudenberg & Yann Loe-Mie & Nuno A Fonseca & Wolfgang Huber & Christian H. Haering & Leonid Mirny & Francois Spitz, 2017. "Two independent modes of chromatin organization revealed by cohesin removal," Nature, Nature, vol. 551(7678), pages 51-56, November.
    9. Sergey V. Ulianov & Vlada V. Zakharova & Aleksandra A. Galitsyna & Pavel I. Kos & Kirill E. Polovnikov & Ilya M. Flyamer & Elena A. Mikhaleva & Ekaterina E. Khrameeva & Diego Germini & Mariya D. Logac, 2021. "Order and stochasticity in the folding of individual Drosophila genomes," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Liao & Juntao Wang & Zhangsheng Zhu & Yuanlong Liu & Jinfeng Chen & Yongfeng Zhou & Feng Liu & Jianjun Lei & Brandon S. Gaut & Bihao Cao & J. J. Emerson & Changming Chen, 2022. "The 3D architecture of the pepper genome and its relationship to function and evolution," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Markus Götz & Olivier Messina & Sergio Espinola & Jean-Bernard Fiche & Marcelo Nollmann, 2022. "Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Da Lin & Weize Xu & Ping Hong & Chengchao Wu & Zhihui Zhang & Siheng Zhang & Lingyu Xing & Bing Yang & Wei Zhou & Qin Xiao & Jinyue Wang & Cong Wang & Yu He & Xi Chen & Xiaojian Cao & Jiangwei Man & A, 2022. "Decoding the spatial chromatin organization and dynamic epigenetic landscapes of macrophage cells during differentiation and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Julia Minderjahn & Alexander Fischer & Konstantin Maier & Karina Mendes & Margit Nuetzel & Johanna Raithel & Hanna Stanewsky & Ute Ackermann & Robert Månsson & Claudia Gebhard & Michael Rehli, 2022. "Postmitotic differentiation of human monocytes requires cohesin-structured chromatin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Guang Shi & D. Thirumalai, 2023. "A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Dominic D. G. Owens & Giorgio Anselmi & A. Marieke Oudelaar & Damien J. Downes & Alessandro Cavallo & Joe R. Harman & Ron Schwessinger & Akin Bucakci & Lucas Greder & Sara Ornellas & Danuta Jeziorska , 2022. "Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Tomas Zelenka & Antonios Klonizakis & Despina Tsoukatou & Dionysios-Alexandros Papamatheakis & Sören Franzenburg & Petros Tzerpos & Ioannis-Rafail Tzonevrakis & George Papadogkonas & Manouela Kapsetak, 2022. "The 3D enhancer network of the developing T cell genome is shaped by SATB1," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    9. Olivier Messina & Flavien Raynal & Julian Gurgo & Jean-Bernard Fiche & Vera Pancaldi & Marcelo Nollmann, 2023. "3D chromatin interactions involving Drosophila insulators are infrequent but preferential and arise before TADs and transcription," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Ziad Ibrahim & Tao Wang & Olivier Destaing & Nicola Salvi & Naghmeh Hoghoughi & Clovis Chabert & Alexandra Rusu & Jinjun Gao & Leonardo Feletto & Nicolas Reynoird & Thomas Schalch & Yingming Zhao & Ma, 2022. "Structural insights into p300 regulation and acetylation-dependent genome organisation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    11. Sarah B. Reiff & Andrew J. Schroeder & Koray Kırlı & Andrea Cosolo & Clara Bakker & Luisa Mercado & Soohyun Lee & Alexander D. Veit & Alexander K. Balashov & Carl Vitzthum & William Ronchetti & Kent M, 2022. "The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Ryuichiro Nakato & Toyonori Sakata & Jiankang Wang & Luis Augusto Eijy Nagai & Yuya Nagaoka & Gina Miku Oba & Masashige Bando & Katsuhiko Shirahige, 2023. "Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Dunming Hua & Ming Gu & Xiao Zhang & Yanyi Du & Hangcheng Xie & Li Qi & Xiangjun Du & Zhidong Bai & Xiaopeng Zhu & Dechao Tian, 2024. "DiffDomain enables identification of structurally reorganized topologically associating domains," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Louisa Hill & Gordana Wutz & Markus Jaritz & Hiromi Tagoh & Lesly Calderón & Jan-Michael Peters & Anton Goloborodko & Meinrad Busslinger, 2023. "Igh and Igk loci use different folding principles for V gene recombination due to distinct chromosomal architectures of pro-B and pre-B cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Shuai Liu & Yaqiang Cao & Kairong Cui & Qingsong Tang & Keji Zhao, 2022. "Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Abrar Aljahani & Peng Hua & Magdalena A. Karpinska & Kimberly Quililan & James O. J. Davies & A. Marieke Oudelaar, 2022. "Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Surya K Ghosh & Daniel Jost, 2018. "How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-26, May.
    18. Mattia Conte & Ehsan Irani & Andrea M. Chiariello & Alex Abraham & Simona Bianco & Andrea Esposito & Mario Nicodemi, 2022. "Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. David E. Torres & H. Martin Kramer & Vittorio Tracanna & Gabriel L. Fiorin & David E. Cook & Michael F. Seidl & Bart P. H. J. Thomma, 2024. "Implications of the three-dimensional chromatin organization for genome evolution in a fungal plant pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Judith H. I. Haarhuis & Robin H. Weide & Vincent A. Blomen & Koen D. Flach & Hans Teunissen & Laureen Willems & Thijn R. Brummelkamp & Benjamin D. Rowland & Elzo Wit, 2022. "A Mediator-cohesin axis controls heterochromatin domain formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29599-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.