IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006159.html
   My bibliography  Save this article

How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes

Author

Listed:
  • Surya K Ghosh
  • Daniel Jost

Abstract

The 3D organization of chromosomes is crucial for regulating gene expression and cell function. Many experimental and polymer modeling efforts are dedicated to deciphering the mechanistic principles behind chromosome folding. Chromosomes are long and densely packed—topologically constrained—polymers. The main challenges are therefore to develop adequate models and simulation methods to investigate properly the multi spatio-temporal scales of such macromolecules. Here, we proposed a generic strategy to develop efficient coarse-grained models for self-avoiding polymers on a lattice. Accounting accurately for the polymer entanglement length and the volumic density, we show that our simulation scheme not only captures the steady-state structural and dynamical properties of the system but also tracks the same dynamics at different coarse-graining. This strategy allows a strong power-law gain in numerical efficiency and offers a systematic way to define reliable coarse-grained null models for chromosomes and to go beyond the current limitations by studying long chromosomes during an extended time period with good statistics. We use our formalism to investigate in details the time evolution of the 3D organization of chromosome 3R (20 Mbp) in drosophila during one cell cycle (20 hours). We show that a combination of our coarse-graining strategy with a one-parameter block copolymer model integrating epigenomic-driven interactions quantitatively reproduce experimental data at the chromosome-scale and predict that chromatin motion is very dynamic during the cell cycle.Author summary: The chromosome architecture inside cell nuclei plays important roles in regulating cell functions. Many experimental and modeling efforts are dedicated to deciphering the mechanisms controlling such organization. There are proliferations of experimental studies which report the hierarchical structure of chromosomes but how exactly they physically organize in 3D is not fully understood. In modeling, the main challenges are to develop adequate models and simulation methods to investigate correctly these highly dense long polymer chains. Taken into consideration the fundamental physical characteristics of chromosomes, we developed robust and numerically efficient polymer models that enabled us to explore the dynamics of long chromosomes over long time periods with good statistics. We applied this framework to investigate the dynamical folding of chromosome in drosophila. Accounting for the local biochemical information, we were able to reproduce the experimentally-measured contact frequencies between any pairs of genomic loci quantitatively and to track the hierarchical chromosome structure throughout the cell cycle. Our results further support the picture of a very dynamic chromosome organization driven by weak short-range interactions.

Suggested Citation

  • Surya K Ghosh & Daniel Jost, 2018. "How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-26, May.
  • Handle: RePEc:plo:pcbi00:1006159
    DOI: 10.1371/journal.pcbi.1006159
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006159
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006159&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adam G. Larson & Daniel Elnatan & Madeline M. Keenen & Michael J. Trnka & Jonathan B. Johnston & Alma L. Burlingame & David A. Agard & Sy Redding & Geeta J. Narlikar, 2017. "Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin," Nature, Nature, vol. 547(7662), pages 236-240, July.
    2. Tim J. Stevens & David Lando & Srinjan Basu & Liam P. Atkinson & Yang Cao & Steven F. Lee & Martin Leeb & Kai J. Wohlfahrt & Wayne Boucher & Aoife O’Shaughnessy-Kirwan & Julie Cramard & Andre J. Faure, 2017. "3D structures of individual mammalian genomes studied by single-cell Hi-C," Nature, Nature, vol. 544(7648), pages 59-64, April.
    3. Daniele Canzio & Maofu Liao & Nariman Naber & Edward Pate & Adam Larson & Shenping Wu & Diana B. Marina & Jennifer F. Garcia & Hiten D. Madhani & Roger Cooke & Peter Schuck & Yifan Cheng & Geeta J. Na, 2013. "A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly," Nature, Nature, vol. 496(7445), pages 377-381, April.
    4. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    5. Yun Zhu & Zhao Chen & Kai Zhang & Mengchi Wang & David Medovoy & John W. Whitaker & Bo Ding & Nan Li & Lina Zheng & Wei Wang, 2016. "Constructing 3D interaction maps from 1D epigenomes," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
    6. Martin Franke & Daniel M. Ibrahim & Guillaume Andrey & Wibke Schwarzer & Verena Heinrich & Robert Schöpflin & Katerina Kraft & Rieke Kempfer & Ivana Jerković & Wing-Lee Chan & Malte Spielmann & Bernd , 2016. "Formation of new chromatin domains determines pathogenicity of genomic duplications," Nature, Nature, vol. 538(7624), pages 265-269, October.
    7. Ajazul H. Wani & Alistair N. Boettiger & Patrick Schorderet & Ayla Ergun & Christine Münger & Ruslan I. Sadreyev & Xiaowei Zhuang & Robert E. Kingston & Nicole J. Francis, 2016. "Chromatin topology is coupled to Polycomb group protein subnuclear organization," Nature Communications, Nature, vol. 7(1), pages 1-13, April.
    8. Zhijun Duan & Mirela Andronescu & Kevin Schutz & Sean McIlwain & Yoo Jung Kim & Choli Lee & Jay Shendure & Stanley Fields & C. Anthony Blau & William S. Noble, 2010. "A three-dimensional model of the yeast genome," Nature, Nature, vol. 465(7296), pages 363-367, May.
    9. Takashi Nagano & Yaniv Lubling & Tim J. Stevens & Stefan Schoenfelder & Eitan Yaffe & Wendy Dean & Ernest D. Laue & Amos Tanay & Peter Fraser, 2013. "Single-cell Hi-C reveals cell-to-cell variability in chromosome structure," Nature, Nature, vol. 502(7469), pages 59-64, October.
    10. Elphège P. Nora & Bryan R. Lajoie & Edda G. Schulz & Luca Giorgetti & Ikuhiro Okamoto & Nicolas Servant & Tristan Piolot & Nynke L. van Berkum & Johannes Meisig & John Sedat & Joost Gribnau & Emmanuel, 2012. "Spatial partitioning of the regulatory landscape of the X-inactivation centre," Nature, Nature, vol. 485(7398), pages 381-385, May.
    11. Ilya M. Flyamer & Johanna Gassler & Maxim Imakaev & Hugo B. Brandão & Sergey V. Ulianov & Nezar Abdennur & Sergey V. Razin & Leonid A. Mirny & Kikuë Tachibana-Konwalski, 2017. "Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition," Nature, Nature, vol. 544(7648), pages 110-114, April.
    12. Alistair N. Boettiger & Bogdan Bintu & Jeffrey R. Moffitt & Siyuan Wang & Brian J. Beliveau & Geoffrey Fudenberg & Maxim Imakaev & Leonid A. Mirny & Chao-ting Wu & Xiaowei Zhuang, 2016. "Super-resolution imaging reveals distinct chromatin folding for different epigenetic states," Nature, Nature, vol. 529(7586), pages 418-422, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangram Kadam & Kiran Kumari & Vinoth Manivannan & Shuvadip Dutta & Mithun K. Mitra & Ranjith Padinhateeri, 2023. "Predicting scale-dependent chromatin polymer properties from systematic coarse-graining," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Markus Götz & Olivier Messina & Sergio Espinola & Jean-Bernard Fiche & Marcelo Nollmann, 2022. "Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Götz & Olivier Messina & Sergio Espinola & Jean-Bernard Fiche & Marcelo Nollmann, 2022. "Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Guang Shi & D. Thirumalai, 2023. "A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Dunming Hua & Ming Gu & Xiao Zhang & Yanyi Du & Hangcheng Xie & Li Qi & Xiangjun Du & Zhidong Bai & Xiaopeng Zhu & Dechao Tian, 2024. "DiffDomain enables identification of structurally reorganized topologically associating domains," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Da Lin & Weize Xu & Ping Hong & Chengchao Wu & Zhihui Zhang & Siheng Zhang & Lingyu Xing & Bing Yang & Wei Zhou & Qin Xiao & Jinyue Wang & Cong Wang & Yu He & Xi Chen & Xiaojian Cao & Jiangwei Man & A, 2022. "Decoding the spatial chromatin organization and dynamic epigenetic landscapes of macrophage cells during differentiation and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Mattia Conte & Ehsan Irani & Andrea M. Chiariello & Alex Abraham & Simona Bianco & Andrea Esposito & Mario Nicodemi, 2022. "Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Sarah B. Reiff & Andrew J. Schroeder & Koray Kırlı & Andrea Cosolo & Clara Bakker & Luisa Mercado & Soohyun Lee & Alexander D. Veit & Alexander K. Balashov & Carl Vitzthum & William Ronchetti & Kent M, 2022. "The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Judith H. I. Haarhuis & Robin H. Weide & Vincent A. Blomen & Koen D. Flach & Hans Teunissen & Laureen Willems & Thijn R. Brummelkamp & Benjamin D. Rowland & Elzo Wit, 2022. "A Mediator-cohesin axis controls heterochromatin domain formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Alon Diament & Tamir Tuller, 2015. "Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-22, May.
    10. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Zhaohui Qin & Ben Li & Karen N. Conneely & Hao Wu & Ming Hu & Deepak Ayyala & Yongseok Park & Victor X. Jin & Fangyuan Zhang & Han Zhang & Li Li & Shili Lin, 2016. "Statistical Challenges in Analyzing Methylation and Long-Range Chromosomal Interaction Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 284-309, October.
    12. Jia-Yong Zhong & Longjian Niu & Zhuo-Bin Lin & Xin Bai & Ying Chen & Feng Luo & Chunhui Hou & Chuan-Le Xiao, 2023. "High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Lina Zheng & Wei Wang, 2022. "Regulation associated modules reflect 3D genome modularity associated with chromatin activity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Ziad Ibrahim & Tao Wang & Olivier Destaing & Nicola Salvi & Naghmeh Hoghoughi & Clovis Chabert & Alexandra Rusu & Jinjun Gao & Leonardo Feletto & Nicolas Reynoird & Thomas Schalch & Yingming Zhao & Ma, 2022. "Structural insights into p300 regulation and acetylation-dependent genome organisation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    15. Simeon Carstens & Michael Nilges & Michael Habeck, 2016. "Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-33, December.
    16. Ofir Shukron & David Holcman, 2017. "Transient chromatin properties revealed by polymer models and stochastic simulations constructed from Chromosomal Capture data," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-20, April.
    17. Sangram Kadam & Kiran Kumari & Vinoth Manivannan & Shuvadip Dutta & Mithun K. Mitra & Ranjith Padinhateeri, 2023. "Predicting scale-dependent chromatin polymer properties from systematic coarse-graining," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Yifeng Qi & Bin Zhang, 2021. "Chromatin network retards nucleoli coalescence," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    19. Ting Peng & Yingping Hou & Haowei Meng & Yong Cao & Xiaotian Wang & Lumeng Jia & Qing Chen & Yang Zheng & Yujie Sun & Hebing Chen & Tingting Li & Cheng Li, 2023. "Mapping nucleolus-associated chromatin interactions using nucleolus Hi-C reveals pattern of heterochromatin interactions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Andrea Wilderman & Eva D’haene & Machteld Baetens & Tara N. Yankee & Emma Wentworth Winchester & Nicole Glidden & Ellen Roets & Jo Dorpe & Sandra Janssens & Danny E. Miller & Miranda Galey & Kari M. B, 2024. "A distant global control region is essential for normal expression of anterior HOXA genes during mouse and human craniofacial development," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.