IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29196-6.html
   My bibliography  Save this article

New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain

Author

Listed:
  • Stella Cesari

    (PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD)

  • Yuxuan Xi

    (PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD)

  • Nathalie Declerck

    (PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD)

  • Véronique Chalvon

    (PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD)

  • Léa Mammri

    (CBS, Univ. Montpellier, CNRS, INSERM)

  • Martine Pugnière

    (IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier)

  • Corinne Henriquet

    (IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier)

  • Karine Guillen

    (CBS, Univ. Montpellier, CNRS, INSERM)

  • Vincent Chochois

    (Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion)

  • André Padilla

    (CBS, Univ. Montpellier, CNRS, INSERM)

  • Thomas Kroj

    (PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD)

Abstract

Plant nucleotide-binding and leucine-rich repeat domain proteins (NLRs) are immune sensors that recognize pathogen effectors. Here, we show that molecular engineering of the integrated decoy domain (ID) of an NLR can extend its recognition spectrum to a new effector. We relied for this on detailed knowledge on the recognition of the Magnaporthe oryzae effectors AVR-PikD, AVR-Pia, and AVR1-CO39 by, respectively, the rice NLRs Pikp-1 and RGA5. Both receptors detect their effectors through physical binding to their HMA (Heavy Metal-Associated) IDs. By introducing into RGA5_HMA the AVR-PikD binding residues of Pikp-1_HMA, we create a high-affinity binding surface for this effector. RGA5 variants carrying this engineered binding surface perceive the new ligand, AVR-PikD, and still recognize AVR-Pia and AVR1-CO39 in the model plant N. benthamiana. However, they do not confer extended disease resistance specificity against M. oryzae in transgenic rice plants. Altogether, our study provides a proof of concept for the design of new effector recognition specificities in NLRs through molecular engineering of IDs.

Suggested Citation

  • Stella Cesari & Yuxuan Xi & Nathalie Declerck & Véronique Chalvon & Léa Mammri & Martine Pugnière & Corinne Henriquet & Karine Guillen & Vincent Chochois & André Padilla & Thomas Kroj, 2022. "New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29196-6
    DOI: 10.1038/s41467-022-29196-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29196-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29196-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    2. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    2. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    3. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    4. Xin Zhang & Yang Liu & Guixin Yuan & Shiwei Wang & Dongli Wang & Tongtong Zhu & Xuefeng Wu & Mengqi Ma & Liwei Guo & Hailong Guo & Vijai Bhadauria & Junfeng Liu & You-Liang Peng, 2024. "The synthetic NLR RGA5HMA5 requires multiple interfaces within and outside the integrated domain for effector recognition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Matheus Thomas Kuska & Jan Behmann & Mahsa Namini & Erich-Christian Oerke & Ulrike Steiner & Anne-Katrin Mahlein, 2019. "Discovering coherency of specific gene expression and optical reflectance properties of barley genotypes differing for resistance reactions against powdery mildew," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-20, March.
    6. Gelsomina Manganiello & Nicola Nicastro & Luciano Ortenzi & Federico Pallottino & Corrado Costa & Catello Pane, 2024. "Trichoderma Biocontrol Performances against Baby-Lettuce Fusarium Wilt Surveyed by Hyperspectral Imaging-Based Machine Learning and Infrared Thermography," Agriculture, MDPI, vol. 14(2), pages 1-18, February.
    7. Ana Cruz-Silva & Andreia Figueiredo & Mónica Sebastiana, 2021. "First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    8. Manish Kumar & Amandeep Brar & Monika Yadav & Aakash Chawade & V. Vivekanand & Nidhi Pareek, 2018. "Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens," Agriculture, MDPI, vol. 8(7), pages 1-12, June.
    9. Costas Bouyioukos & Matthew J Moscou & Nicolas Champouret & Inmaculada Hernández-Pinzón & Eric R Ward & Brande B H Wulff, 2013. "Characterisation and Analysis of the Aegilops sharonensis Transcriptome, a Wild Relative of Wheat in the Sitopsis Section," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-1, August.
    10. Carmen Santos & Susana Trindade Leitão, 2023. "The Exceptionally Large Genomes of the Fabeae Tribe: Comparative Genomics and Applications in Abiotic and Biotic Stress Studies," Agriculture, MDPI, vol. 14(1), pages 1-21, December.
    11. Theodora Ijeoma Ekwomadu & Mulunda Mwanza, 2023. "Fusarium Fungi Pathogens, Identification, Adverse Effects, Disease Management, and Global Food Security: A Review of the Latest Research," Agriculture, MDPI, vol. 13(9), pages 1-20, September.
    12. Jan Bettgenhaeuser & Inmaculada Hernández-Pinzón & Andrew M. Dawson & Matthew Gardiner & Phon Green & Jodie Taylor & Matthew Smoker & John N. Ferguson & Peter Emmrich & Amelia Hubbard & Rosemary Bay, 2021. "The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    13. Lyudmila Plotnikova & Violetta Pozherukova & Valeria Knaub & Yuryi Kashuba, 2022. "What Was the Reason for the Durable Effect of Sr31 against Wheat Stem Rust?," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    14. Beatriz Val-Torregrosa & Mireia Bundó & Blanca San Segundo, 2021. "Crosstalk between Nutrient Signalling Pathways and Immune Responses in Rice," Agriculture, MDPI, vol. 11(8), pages 1-21, August.
    15. Sisay Kidane Alemu & Ayele Badebo Huluka & Kassahun Tesfaye & Teklehaimanot Haileselassie & Cristobal Uauy, 2021. "Genome-wide association mapping identifies yellow rust resistance loci in Ethiopian durum wheat germplasm," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-28, May.
    16. Adeeb Rahman & Neeti Sanan-Mishra, 2024. "When an Intruder Comes Home: GM and GE Strategies to Combat Virus Infection in Plants," Agriculture, MDPI, vol. 14(2), pages 1-26, February.
    17. Xiaozhen Zhao & Yiming Wang & Bingqin Yuan & Hanxi Zhao & Yujie Wang & Zheng Tan & Zhiyuan Wang & Huijun Wu & Gang Li & Wei Song & Ravi Gupta & Kenichi Tsuda & Zhonghua Ma & Xuewen Gao & Qin Gu, 2024. "Temporally-coordinated bivalent histone modifications of BCG1 enable fungal invasion and immune evasion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Nkulu Kabange Rolly & Qari Muhammad Imran & Hyun-Ho Kim & Nay Chi Aye & Adil Hussain & Kyung-Min Kim & Byung-Wook Yun, 2020. "Pathogen-Induced Expression of OsDHODH1 Suggests Positive Regulation of Basal Defense Against Xanthomonas oryzae pv. oryzae in Rice," Agriculture, MDPI, vol. 10(11), pages 1-19, November.
    19. Guotai Yu & Oadi Matny & Nicolas Champouret & Burkhard Steuernagel & Matthew J. Moscou & Inmaculada Hernández-Pinzón & Phon Green & Sadiye Hayta & Mark Smedley & Wendy Harwood & Ngonidzashe Kangara & , 2022. "Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Xiaomin Wang & Rui Cheng & Daochao Xu & Renliang Huang & Haoxing Li & Liang Jin & Yufeng Wu & Jiuyou Tang & Changhui Sun & Deliang Peng & Chengcai Chu & Xiaoli Guo, 2023. "MG1 interacts with a protease inhibitor and confers resistance to rice root-knot nematode," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29196-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.