IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29132-8.html
   My bibliography  Save this article

Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62

Author

Listed:
  • Guotai Yu

    (John Innes Centre, Norwich Research Park
    King Abdullah University of Science and Technology (KAUST)
    King Abdullah University of Science and Technology)

  • Oadi Matny

    (University of Minnesota)

  • Nicolas Champouret

    (University of East Anglia
    Syngenta Flowers)

  • Burkhard Steuernagel

    (John Innes Centre, Norwich Research Park)

  • Matthew J. Moscou

    (University of East Anglia)

  • Inmaculada Hernández-Pinzón

    (University of East Anglia)

  • Phon Green

    (University of East Anglia)

  • Sadiye Hayta

    (John Innes Centre, Norwich Research Park)

  • Mark Smedley

    (John Innes Centre, Norwich Research Park)

  • Wendy Harwood

    (John Innes Centre, Norwich Research Park)

  • Ngonidzashe Kangara

    (John Innes Centre, Norwich Research Park)

  • Yajuan Yue

    (John Innes Centre, Norwich Research Park)

  • Catherine Gardener

    (John Innes Centre, Norwich Research Park)

  • Mark J. Banfield

    (John Innes Centre, Norwich Research Park)

  • Pablo D. Olivera

    (University of Minnesota)

  • Cole Welchin

    (University of Minnesota)

  • Jamie Simmons

    (University of Minnesota)

  • Eitan Millet

    (Tel Aviv University)

  • Anna Minz-Dub

    (Tel Aviv University)

  • Moshe Ronen

    (Tel Aviv University)

  • Raz Avni

    (Tel Aviv University
    Tel Aviv University
    Leibniz Institute of Plant Genetics and Crop Plant Research (IPK).)

  • Amir Sharon

    (Tel Aviv University)

  • Mehran Patpour

    (Aarhus University)

  • Annemarie F. Justesen

    (Aarhus University)

  • Murukarthick Jayakodi

    (Leibniz Institute of Plant Genetics and Crop Plant Research (IPK))

  • Axel Himmelbach

    (Leibniz Institute of Plant Genetics and Crop Plant Research (IPK))

  • Nils Stein

    (Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)
    Georg-August-University)

  • Shuangye Wu

    (Kansas State University)

  • Jesse Poland

    (Kansas State University)

  • Jennifer Ens

    (University of Saskatchewan)

  • Curtis Pozniak

    (University of Saskatchewan)

  • Miroslava Karafiátová

    (Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research)

  • István Molnár

    (Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research
    Agricultural Institute, Centre for Agricultural Research, ELKH)

  • Jaroslav Doležel

    (Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research)

  • Eric R. Ward

    (University of East Anglia
    2Blades Foundation
    AgBiome, Inc.)

  • T. Lynne Reuber

    (2Blades Foundation
    Alliance Management at Enko Chem)

  • Jonathan D. G. Jones

    (University of East Anglia)

  • Martin Mascher

    (Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)
    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig)

  • Brian J. Steffenson

    (University of Minnesota)

  • Brande B. H. Wulff

    (John Innes Centre, Norwich Research Park
    King Abdullah University of Science and Technology (KAUST)
    King Abdullah University of Science and Technology)

Abstract

The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance.

Suggested Citation

  • Guotai Yu & Oadi Matny & Nicolas Champouret & Burkhard Steuernagel & Matthew J. Moscou & Inmaculada Hernández-Pinzón & Phon Green & Sadiye Hayta & Mark Smedley & Wendy Harwood & Ngonidzashe Kangara & , 2022. "Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29132-8
    DOI: 10.1038/s41467-022-29132-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29132-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29132-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Mascher & Heidrun Gundlach & Axel Himmelbach & Sebastian Beier & Sven O. Twardziok & Thomas Wicker & Volodymyr Radchuk & Christoph Dockter & Pete E. Hedley & Joanne Russell & Micha Bayer & Luke, 2017. "A chromosome conformation capture ordered sequence of the barley genome," Nature, Nature, vol. 544(7651), pages 427-433, April.
    2. Shaoni Bhattacharya, 2017. "Deadly new wheat disease threatens Europe’s crops," Nature, Nature, vol. 542(7640), pages 145-146, February.
    3. Ping Lu & Li Guo & Zhenzhong Wang & Beibei Li & Jing Li & Yahui Li & Dan Qiu & Wenqi Shi & Lijun Yang & Ning Wang & Guanghao Guo & Jingzhong Xie & Qiuhong Wu & Yongxing Chen & Miaomiao Li & Huaizhi Zh, 2020. "A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Valentina Klymiuk & Elitsur Yaniv & Lin Huang & Dina Raats & Andrii Fatiukha & Shisheng Chen & Lihua Feng & Zeev Frenkel & Tamar Krugman & Gabriel Lidzbarsky & Wei Chang & Marko J. Jääskeläinen & Chri, 2018. "Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    5. Ming-Cheng Luo & Yong Q. Gu & Daniela Puiu & Hao Wang & Sven O. Twardziok & Karin R. Deal & Naxin Huo & Tingting Zhu & Le Wang & Yi Wang & Patrick E. McGuire & Shuyang Liu & Hai Long & Ramesh K. Ramas, 2017. "Genome sequence of the progenitor of the wheat D genome Aegilops tauschii," Nature, Nature, vol. 551(7681), pages 498-502, November.
    6. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    7. Jianping Zhang & Timothy C. Hewitt & Willem H. P. Boshoff & Ian Dundas & Narayana Upadhyaya & Jianbo Li & Mehran Patpour & Sutha Chandramohan & Zacharias A. Pretorius & Mogens Hovmøller & Wendelin Sch, 2021. "A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Hong-Qing Ling & Bin Ma & Xiaoli Shi & Hui Liu & Lingli Dong & Hua Sun & Yinghao Cao & Qiang Gao & Shusong Zheng & Ye Li & Ying Yu & Huilong Du & Ming Qi & Yan Li & Hongwei Lu & Hua Yu & Yan Cui & Nin, 2018. "Genome sequence of the progenitor of wheat A subgenome Triticum urartu," Nature, Nature, vol. 557(7705), pages 424-428, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miaomiao Li & Huaizhi Zhang & Huixin Xiao & Keyu Zhu & Wenqi Shi & Dong Zhang & Yong Wang & Lijun Yang & Qiuhong Wu & Jingzhong Xie & Yongxing Chen & Dan Qiu & Guanghao Guo & Ping Lu & Beibei Li & Lei, 2024. "A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Fei Ni & Yanyan Zheng & Xiaoke Liu & Yang Yu & Guangqiang Zhang & Lynn Epstein & Xue Mao & Jingzheng Wu & Cuiling Yuan & Bo Lv & Haixia Yu & Jinlong Li & Qi Zhao & Qiyu Yang & Jiajun Liu & Juan Qi & D, 2023. "Sequencing trait-associated mutations to clone wheat rust-resistance gene YrNAM," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Huanhuan Li & Wenqiang Men & Chao Ma & Qianwen Liu & Zhenjie Dong & Xiubin Tian & Chaoli Wang & Cheng Liu & Harsimardeep S. Gill & Pengtao Ma & Zhibin Zhang & Bao Liu & Yue Zhao & Sunish K. Sehgal & W, 2024. "Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Jianping Zhang & Jayaveeramuthu Nirmala & Shisheng Chen & Matthias Jost & Burkhard Steuernagel & Mirka Karafiatova & Tim Hewitt & Hongna Li & Erena Edae & Keshav Sharma & Sami Hoxha & Dhara Bhatt & Re, 2023. "Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus SR9," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huanhuan Li & Wenqiang Men & Chao Ma & Qianwen Liu & Zhenjie Dong & Xiubin Tian & Chaoli Wang & Cheng Liu & Harsimardeep S. Gill & Pengtao Ma & Zhibin Zhang & Bao Liu & Yue Zhao & Sunish K. Sehgal & W, 2024. "Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Miaomiao Li & Huaizhi Zhang & Huixin Xiao & Keyu Zhu & Wenqi Shi & Dong Zhang & Yong Wang & Lijun Yang & Qiuhong Wu & Jingzhong Xie & Yongxing Chen & Dan Qiu & Guanghao Guo & Ping Lu & Beibei Li & Lei, 2024. "A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Habteab Goitom Gebremedhin & Yahui Li & Jinghuang Hu & Dan Qiu & Qiuhong Wu & Hongjun Zhang & Li Yang & Yang Zhou & Yijun Zhou & Zhiyong Liu & Peng Zhang & Hongjie Li, 2022. "Development of KASP and SSR Markers for PmQ , a Recessive Gene Conferring Powdery Mildew Resistance in Wheat Landrace Qingxinmai," Agriculture, MDPI, vol. 12(9), pages 1-10, August.
    4. Lyudmila Plotnikova & Violetta Pozherukova & Valeria Knaub & Yuryi Kashuba, 2022. "What Was the Reason for the Durable Effect of Sr31 against Wheat Stem Rust?," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    5. Guifang Lin & Hui Chen & Bin Tian & Sunish K. Sehgal & Lovepreet Singh & Jingzhong Xie & Nidhi Rawat & Philomin Juliana & Narinder Singh & Sandesh Shrestha & Duane L. Wilson & Hannah Shult & Hyeonju L, 2022. "Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Mariam Amouzoune & Sajid Rehman & Rachid Benkirane & Swati Verma & Sanjaya Gyawali & Muamar Al-Jaboobi & Ramesh Pal Singh Verma & Zakaria Kehel & Ahmed Amri, 2022. "Genome-Wide Association Study of Leaf Rust Resistance at Seedling and Adult Plant Stages in a Global Barley Panel," Agriculture, MDPI, vol. 12(11), pages 1-26, November.
    7. Zijuan Li & Yuyun Zhang & Ci-Hang Ding & Yan Chen & Haoyu Wang & Jinyu Zhang & Songbei Ying & Meiyue Wang & Rongzhi Zhang & Jinyi Liu & Yilin Xie & Tengfei Tang & Huishan Diao & Luhuan Ye & Yili Zhuan, 2023. "LHP1-mediated epigenetic buffering of subgenome diversity and defense responses confers genome plasticity and adaptability in allopolyploid wheat," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Carmen Escudero-Martinez & Max Coulter & Rodrigo Alegria Terrazas & Alexandre Foito & Rumana Kapadia & Laura Pietrangelo & Mauro Maver & Rajiv Sharma & Alessio Aprile & Jenny Morris & Pete E. Hedley &, 2022. "Identifying plant genes shaping microbiota composition in the barley rhizosphere," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    10. Gengshen Chen & Bao Zhang & Junqiang Ding & Hongze Wang & Ce Deng & Jiali Wang & Qianhui Yang & Qianyu Pi & Ruyang Zhang & Haoyu Zhai & Junfei Dong & Junshi Huang & Jiabao Hou & Junhua Wu & Jiamin Que, 2022. "Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Fei Ni & Yanyan Zheng & Xiaoke Liu & Yang Yu & Guangqiang Zhang & Lynn Epstein & Xue Mao & Jingzheng Wu & Cuiling Yuan & Bo Lv & Haixia Yu & Jinlong Li & Qi Zhao & Qiyu Yang & Jiajun Liu & Juan Qi & D, 2023. "Sequencing trait-associated mutations to clone wheat rust-resistance gene YrNAM," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    13. Olga Afanasenko & Irina Rozanova & Anastasiia Gofman & Nina Lashina & Fluturë Novakazi & Nina Mironenko & Olga Baranova & Alexandr Zubkovich, 2022. "Validation of Molecular Markers of Barley Net Blotch Resistance Loci on Chromosome 3H for Marker-Assisted Selection," Agriculture, MDPI, vol. 12(4), pages 1-20, March.
    14. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    15. Taikui Zhang & Weichen Huang & Lin Zhang & De-Zhu Li & Ji Qi & Hong Ma, 2024. "Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    16. Olga Baranova & Valeriya Solyanikova & Elena Kyrova & Elmira Kon’kova & Sergey Gaponov & Valery Sergeev & Sergey Shevchenko & Pyotr Mal’chikov & Dmitrij Dolzhenko & Lyudmila Bespalova & Irina Ablova &, 2023. "Evaluation of Resistance to Stem Rust and Identification of Sr Genes in Russian Spring and Winter Wheat Cultivars in the Volga Region," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    17. Jianping Zhang & Jayaveeramuthu Nirmala & Shisheng Chen & Matthias Jost & Burkhard Steuernagel & Mirka Karafiatova & Tim Hewitt & Hongna Li & Erena Edae & Keshav Sharma & Sami Hoxha & Dhara Bhatt & Re, 2023. "Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus SR9," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Matheus Thomas Kuska & Jan Behmann & Mahsa Namini & Erich-Christian Oerke & Ulrike Steiner & Anne-Katrin Mahlein, 2019. "Discovering coherency of specific gene expression and optical reflectance properties of barley genotypes differing for resistance reactions against powdery mildew," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-20, March.
    19. Gelsomina Manganiello & Nicola Nicastro & Luciano Ortenzi & Federico Pallottino & Corrado Costa & Catello Pane, 2024. "Trichoderma Biocontrol Performances against Baby-Lettuce Fusarium Wilt Surveyed by Hyperspectral Imaging-Based Machine Learning and Infrared Thermography," Agriculture, MDPI, vol. 14(2), pages 1-18, February.
    20. Yi Liao & Juntao Wang & Zhangsheng Zhu & Yuanlong Liu & Jinfeng Chen & Yongfeng Zhou & Feng Liu & Jianjun Lei & Brandon S. Gaut & Bihao Cao & J. J. Emerson & Changming Chen, 2022. "The 3D architecture of the pepper genome and its relationship to function and evolution," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29132-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.