IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28632-x.html
   My bibliography  Save this article

Multi-parameter photon-by-photon hidden Markov modeling

Author

Listed:
  • Paul David Harris

    (The Hebrew University of Jerusalem)

  • Alessandra Narducci

    (Ludwig-Maximilians-Universität München)

  • Christian Gebhardt

    (Ludwig-Maximilians-Universität München)

  • Thorben Cordes

    (Ludwig-Maximilians-Universität München)

  • Shimon Weiss

    (University of California
    University of California)

  • Eitan Lerner

    (The Hebrew University of Jerusalem
    The Hebrew University of Jerusalem)

Abstract

Single molecule Förster resonance energy transfer (smFRET) is a unique biophysical approach for studying conformational dynamics in biomacromolecules. Photon-by-photon hidden Markov modeling (H2MM) is an analysis tool that can quantify FRET dynamics of single biomolecules, even if they occur on the sub-millisecond timescale. However, dye photophysical transitions intertwined with FRET dynamics may cause artifacts. Here, we introduce multi-parameter H2MM (mpH2MM), which assists in identifying FRET dynamics based on simultaneous observation of multiple experimentally-derived parameters. We show the importance of using mpH2MM to decouple FRET dynamics caused by conformational changes from photophysical transitions in confocal-based smFRET measurements of a DNA hairpin, the maltose binding protein, MalE, and the type-III secretion system effector, YopO, from Yersinia species, all exhibiting conformational dynamics ranging from the sub-second to microsecond timescales. Overall, we show that using mpH2MM facilitates the identification and quantification of biomolecular sub-populations and their origin.

Suggested Citation

  • Paul David Harris & Alessandra Narducci & Christian Gebhardt & Thorben Cordes & Shimon Weiss & Eitan Lerner, 2022. "Multi-parameter photon-by-photon hidden Markov modeling," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28632-x
    DOI: 10.1038/s41467-022-28632-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28632-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28632-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongfang Zhao & Daniel Terry & Lei Shi & Harel Weinstein & Scott C. Blanchard & Jonathan A. Javitch, 2010. "Single-molecule dynamics of gating in a neurotransmitter transporter homologue," Nature, Nature, vol. 465(7295), pages 188-193, May.
    2. Antonino Ingargiola & Eitan Lerner & SangYoon Chung & Shimon Weiss & Xavier Michalet, 2016. "FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-27, August.
    3. Gilles Celeux & Jean-Baptiste Durand, 2008. "Selecting hidden Markov model state number with cross-validated likelihood," Computational Statistics, Springer, vol. 23(4), pages 541-564, October.
    4. Guus B. Erkens & Inga Hänelt & Joris M. H. Goudsmits & Dirk Jan Slotboom & Antoine M. van Oijen, 2013. "Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters," Nature, Nature, vol. 502(7469), pages 119-123, October.
    5. Antonino Ingargiola & Eitan Lerner & SangYoon Chung & Francesco Panzeri & Angelo Gulinatti & Ivan Rech & Massimo Ghioni & Shimon Weiss & Xavier Michalet, 2017. "Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-27, April.
    6. Hisham Mazal & Marija Iljina & Yoav Barak & Nadav Elad & Rina Rosenzweig & Pierre Goloubinoff & Inbal Riven & Gilad Haran, 2019. "Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    7. Antonio N. Calabrese & Bob Schiffrin & Matthew Watson & Theodoros K. Karamanos & Martin Walko & Julia R. Humes & Jim E. Horne & Paul White & Andrew J. Wilson & Antreas C. Kalli & Roman Tuma & Alison E, 2020. "Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    8. Yongfang Zhao & Daniel S. Terry & Lei Shi & Matthias Quick & Harel Weinstein & Scott C. Blanchard & Jonathan A. Javitch, 2011. "Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue," Nature, Nature, vol. 474(7349), pages 109-113, June.
    9. C. Ratzke & B. Hellenkamp & T. Hugel, 2014. "Four-colour FRET reveals directionality in the Hsp90 multicomponent machinery," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Markus Götz & Anders Barth & Søren S.-R. Bohr & Richard Börner & Jixin Chen & Thorben Cordes & Dorothy A. Erie & Christian Gebhardt & Mélodie C. A. S. Hadzic & George L. Hamilton & Nikos S. Hatzakis &, 2022. "A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Hyunju Cho & Yumeng Liu & SangYoon Chung & Sowmya Chandrasekar & Shimon Weiss & Shu-ou Shan, 2024. "Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    2. Colombi, R. & Giordano, S., 2015. "Multiple hidden Markov models for categorical time series," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 19-30.
    3. Janczura, Joanna & Weron, Rafal, 2010. "Goodness-of-fit testing for regime-switching models," MPRA Paper 22871, University Library of Munich, Germany.
    4. Jennifer Pohle & Roland Langrock & Floris M. Beest & Niels Martin Schmidt, 2017. "Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 270-293, September.
    5. Hyun Deok Song & Fangqiang Zhu, 2015. "Conformational Changes in Two Inter-Helical Loops of Mhp1 Membrane Transporter," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-19, July.
    6. Sina Mews & Marius Ötting, 2023. "Continuous-time state-space modelling of the hot hand in basketball," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 313-326, March.
    7. Hyunju Cho & Yumeng Liu & SangYoon Chung & Sowmya Chandrasekar & Shimon Weiss & Shu-ou Shan, 2024. "Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. S. Bacci & S. Pandolfi & F. Pennoni, 2014. "A comparison of some criteria for states selection in the latent Markov model for longitudinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 125-145, June.
    9. Wang, Ting & Bebbington, Mark, 2013. "Identifying anomalous signals in GPS data using HMMs: An increased likelihood of earthquakes?," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 27-44.
    10. Parthasarathi Rath & Adrian Hermann & Ramona Schaefer & Elia Agustoni & Jean-Marie Vonach & Martin Siegrist & Christian Miscenic & Andreas Tschumi & Doris Roth & Christoph Bieniossek & Sebastian Hille, 2023. "High-throughput screening of BAM inhibitors in native membrane environment," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Roland Langrock & Thomas Kneib & Alexander Sohn & Stacy L. DeRuiter, 2015. "Nonparametric inference in hidden Markov models using P-splines," Biometrics, The International Biometric Society, vol. 71(2), pages 520-528, June.
    12. Leonie Vollmar & Julia Schimpf & Bianca Hermann & Thorsten Hugel, 2024. "Cochaperones convey the energy of ATP hydrolysis for directional action of Hsp90," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Henryk Gurgul & Robert Syrek & Christoph Mitterer, 2016. "Price duration versus trading volume in high-frequency data for selected DAX companies," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 17(2), pages 241-260.
    14. Francesco Bartolucci & Alessio Farcomeni, 2010. "A note on the mixture transition distribution and hidden Markov models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 132-138, March.
    15. Ali Al-Aradi & Sebastian Jaimungal, 2019. "Active and Passive Portfolio Management with Latent Factors," Papers 1903.06928, arXiv.org.
    16. Joanna Janczura & Rafal Weron, 2012. "Inference for Markov-regime switching models of electricity spot prices," HSC Research Reports HSC/12/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    17. Liu, Hefei & Song, Xinyuan, 2021. "Bayesian analysis of hidden Markov structural equation models with an unknown number of hidden states," Econometrics and Statistics, Elsevier, vol. 18(C), pages 29-43.
    18. Bérard Caroline & Martin-Magniette Marie-Laure & Brunaud Véronique & Aubourg Sébastien & Robin Stéphane, 2011. "Unsupervised Classification for Tiling Arrays: ChIP-chip and Transcriptome," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, November.
    19. Antonino Ingargiola & Eitan Lerner & SangYoon Chung & Francesco Panzeri & Angelo Gulinatti & Ivan Rech & Massimo Ghioni & Shimon Weiss & Xavier Michalet, 2017. "Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-27, April.
    20. Schücking, Maximilian & Jochem, Patrick, 2021. "Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets," Applied Energy, Elsevier, vol. 293(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28632-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.