IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27331-3.html
   My bibliography  Save this article

Tumor evolution selectively inactivates the core microRNA machinery for immune evasion

Author

Listed:
  • Tian-Yu Song

    (Gene Editing Center, School of Life Science and Technology, ShanghaiTech University
    Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences
    Zhejiang University)

  • Min Long

    (Gene Editing Center, School of Life Science and Technology, ShanghaiTech University
    Zhejiang University)

  • Hai-Xin Zhao

    (Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co, Ltd)

  • Miao-Wen Zou

    (Gene Editing Center, School of Life Science and Technology, ShanghaiTech University)

  • Hong-Jie Fan

    (Gene Editing Center, School of Life Science and Technology, ShanghaiTech University
    University of Chinese Academy of Sciences)

  • Yang Liu

    (Gene Editing Center, School of Life Science and Technology, ShanghaiTech University)

  • Chen-Lu Geng

    (Gene Editing Center, School of Life Science and Technology, ShanghaiTech University
    Zhejiang University)

  • Min-Fang Song

    (Gene Editing Center, School of Life Science and Technology, ShanghaiTech University
    Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yu-Feng Liu

    (Gene Editing Center, School of Life Science and Technology, ShanghaiTech University)

  • Jun-Yi Chen

    (Gene Editing Center, School of Life Science and Technology, ShanghaiTech University)

  • Yu-Lin Yang

    (Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co, Ltd)

  • Wen-Rong Zhou

    (Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co, Ltd)

  • Da-Wei Huang

    (Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co, Ltd)

  • Bo Peng

    (Gene Editing Center, School of Life Science and Technology, ShanghaiTech University)

  • Zhen-Gang Peng

    (Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co, Ltd)

  • Yong Cang

    (Gene Editing Center, School of Life Science and Technology, ShanghaiTech University)

Abstract

Cancer cells acquire genetic heterogeneity to escape from immune surveillance during tumor evolution, but a systematic approach to distinguish driver from passenger mutations is lacking. Here we investigate the impact of different immune pressure on tumor clonal dynamics and immune evasion mechanism, by combining massive parallel sequencing of immune edited tumors and CRISPR library screens in syngeneic mouse tumor model and co-culture system. We find that the core microRNA (miRNA) biogenesis and targeting machinery maintains the sensitivity of cancer cells to PD-1-independent T cell-mediated cytotoxicity. Genetic inactivation of the machinery or re-introduction of ANKRD52 frequent patient mutations dampens the JAK-STAT-interferon-γ signaling and antigen presentation in cancer cells, largely by abolishing miR-155-targeted silencing of suppressor of cytokine signaling 1 (SOCS1). Expression of each miRNA machinery component strongly correlates with intratumoral T cell infiltration in nearly all human cancer types. Our data indicate that the evolutionarily conserved miRNA pathway can be exploited by cancer cells to escape from T cell-mediated elimination and immunotherapy.

Suggested Citation

  • Tian-Yu Song & Min Long & Hai-Xin Zhao & Miao-Wen Zou & Hong-Jie Fan & Yang Liu & Chen-Lu Geng & Min-Fang Song & Yu-Feng Liu & Jun-Yi Chen & Yu-Lin Yang & Wen-Rong Zhou & Da-Wei Huang & Bo Peng & Zhen, 2021. "Tumor evolution selectively inactivates the core microRNA machinery for immune evasion," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27331-3
    DOI: 10.1038/s41467-021-27331-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27331-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27331-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan J. Golden & Beibei Chen & Tuo Li & Juliane Braun & Hema Manjunath & Xiang Chen & Jiaxi Wu & Vanessa Schmid & Tsung-Cheng Chang & Florian Kopp & Andres Ramirez-Martinez & Vincent S. Tagliabracci &, 2017. "An Argonaute phosphorylation cycle promotes microRNA-mediated silencing," Nature, Nature, vol. 542(7640), pages 197-202, February.
    2. Keith A. Lawson & Cristovão M. Sousa & Xiaoyu Zhang & Eiru Kim & Rummy Akthar & Joseph J. Caumanns & Yuxi Yao & Nicholas Mikolajewicz & Catherine Ross & Kevin R. Brown & Abdelrahman Abou Zid & Zi Peng, 2020. "Functional genomic landscape of cancer-intrinsic evasion of killing by T cells," Nature, Nature, vol. 586(7827), pages 120-126, October.
    3. Robert T. Manguso & Hans W. Pope & Margaret D. Zimmer & Flavian D. Brown & Kathleen B. Yates & Brian C. Miller & Natalie B. Collins & Kevin Bi & Martin W. LaFleur & Vikram R. Juneja & Sarah A. Weiss &, 2017. "In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target," Nature, Nature, vol. 547(7664), pages 413-418, July.
    4. Rachel Rosenthal & Elizabeth Larose Cadieux & Roberto Salgado & Maise Al Bakir & David A. Moore & Crispin T. Hiley & Tom Lund & Miljana Tanić & James L. Reading & Kroopa Joshi & Jake Y. Henry & Ehsan , 2019. "Neoantigen-directed immune escape in lung cancer evolution," Nature, Nature, vol. 567(7749), pages 479-485, March.
    5. Mahmoud Ghandi & Franklin W. Huang & Judit Jané-Valbuena & Gregory V. Kryukov & Christopher C. Lo & E. Robert McDonald & Jordi Barretina & Ellen T. Gelfand & Craig M. Bielski & Haoxin Li & Kevin Hu & , 2019. "Next-generation characterization of the Cancer Cell Line Encyclopedia," Nature, Nature, vol. 569(7757), pages 503-508, May.
    6. Moshe Sade-Feldman & Yunxin J. Jiao & Jonathan H. Chen & Michael S. Rooney & Michal Barzily-Rokni & Jean-Pierre Eliane & Stacey L. Bjorgaard & Marc R. Hammond & Hans Vitzthum & Shauna M. Blackmon & De, 2017. "Resistance to checkpoint blockade therapy through inactivation of antigen presentation," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    7. Shashank J. Patel & Neville E. Sanjana & Rigel J. Kishton & Arash Eidizadeh & Suman K. Vodnala & Maggie Cam & Jared J. Gartner & Li Jia & Seth M. Steinberg & Tori N. Yamamoto & Anand S. Merchant & Gau, 2017. "Identification of essential genes for cancer immunotherapy," Nature, Nature, vol. 548(7669), pages 537-542, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dzana Dervovic & Ahmad A. Malik & Edward L. Y. Chen & Masahiro Narimatsu & Nina Adler & Somaieh Afiuni-Zadeh & Dagmar Krenbek & Sebastien Martinez & Ricky Tsai & Jonathan Boucher & Jacob M. Berman & K, 2023. "In vivo CRISPR screens reveal Serpinb9 and Adam2 as regulators of immune therapy response in lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Martin Lauss & Bengt Phung & Troels Holz Borch & Katja Harbst & Kamila Kaminska & Anna Ebbesson & Ingrid Hedenfalk & Joan Yuan & Kari Nielsen & Christian Ingvar & Ana Carneiro & Karolin Isaksson & Kri, 2024. "Molecular patterns of resistance to immune checkpoint blockade in melanoma," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Julia Joung & Paul C. Kirchgatterer & Ankita Singh & Jang H. Cho & Suchita P. Nety & Rebecca C. Larson & Rhiannon K. Macrae & Rebecca Deasy & Yuen-Yi Tseng & Marcela V. Maus & Feng Zhang, 2022. "CRISPR activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T cell-mediated cytotoxicity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Louise A. Baldwin & Nenad Bartonicek & Jessica Yang & Sunny Z. Wu & Niantao Deng & Daniel L. Roden & Chia-Ling Chan & Ghamdan Al-Eryani & Damien J. Zanker & Belinda S. Parker & Alexander Swarbrick & S, 2022. "DNA barcoding reveals ongoing immunoediting of clonal cancer populations during metastatic progression and immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Nina Frey & Luigi Tortola & David Egli & Sharan Janjuha & Tanja Rothgangl & Kim Fabiano Marquart & Franziska Ampenberger & Manfred Kopf & Gerald Schwank, 2022. "Loss of Rnf31 and Vps4b sensitizes pancreatic cancer to T cell-mediated killing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Su Yin Lim & Elena Shklovskaya & Jenny H. Lee & Bernadette Pedersen & Ashleigh Stewart & Zizhen Ming & Mal Irvine & Brindha Shivalingam & Robyn P. M. Saw & Alexander M. Menzies & Matteo S. Carlino & R, 2023. "The molecular and functional landscape of resistance to immune checkpoint blockade in melanoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Azucena Ramos & Catherine E. Koch & Yunpeng Liu-Lupo & Riley D. Hellinger & Taeyoon Kyung & Keene L. Abbott & Julia Fröse & Daniel Goulet & Khloe S. Gordon & Keith P. Eidell & Paul Leclerc & Charles A, 2023. "Leukemia-intrinsic determinants of CAR-T response revealed by iterative in vivo genome-wide CRISPR screening," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    9. Irineos Papakyriacou & Ginte Kutkaite & Marta Rúbies Bedós & Divya Nagarajan & Liam P. Alford & Michael P. Menden & Yumeng Mao, 2024. "Loss of NEDD8 in cancer cells causes vulnerability to immune checkpoint blockade in triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Hanhan Ning & Shan Huang & Yang Lei & Renyong Zhi & Han Yan & Jiaxing Jin & Zhenyu Hu & Kaimin Guo & Jinhua Liu & Jie Yang & Zhe Liu & Yi Ba & Xin Gao & Deqing Hu, 2022. "Enhancer decommissioning by MLL4 ablation elicits dsRNA-interferon signaling and GSDMD-mediated pyroptosis to potentiate anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    11. Dario Zimmerli & Chiara S. Brambillasca & Francien Talens & Jinhyuk Bhin & Renske Linstra & Lou Romanens & Arkajyoti Bhattacharya & Stacey E. P. Joosten & Ana Moises Silva & Nuno Padrao & Max D. Welle, 2022. "MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Kelsy C. Cotto & Yang-Yang Feng & Avinash Ramu & Megan Richters & Sharon L. Freshour & Zachary L. Skidmore & Huiming Xia & Joshua F. McMichael & Jason Kunisaki & Katie M. Campbell & Timothy Hung-Po Ch, 2023. "Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Hailin Tu & Weihang Xiong & Jie Zhang & Xueqiang Zhao & Xin Lin, 2022. "Tyrosine phosphorylation regulates RIPK1 activity to limit cell death and inflammation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Shane T. Killarney & Rachel Washart & Ryan S. Soderquist & Jacob P. Hoj & Jamie Lebhar & Kevin H. Lin & Kris C. Wood, 2023. "Executioner caspases restrict mitochondrial RNA-driven Type I IFN induction during chemotherapy-induced apoptosis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Nadege Gitego & Bogos Agianian & Oi Wei Mak & Vasantha Kumar MV & Emily H. Cheng & Evripidis Gavathiotis, 2023. "Chemical modulation of cytosolic BAX homodimer potentiates BAX activation and apoptosis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Miles C. Andrews & Junna Oba & Chang-Jiun Wu & Haifeng Zhu & Tatiana Karpinets & Caitlin A. Creasy & Marie-Andrée Forget & Xiaoxing Yu & Xingzhi Song & Xizeng Mao & A. Gordon Robertson & Gabriele Roma, 2022. "Multi-modal molecular programs regulate melanoma cell state," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Lei Xia & Anastasia Komissarova & Arielle Jacover & Yehuda Shovman & Sebastian Arcila-Barrera & Sharona Tornovsky-Babeay & Milsee Mol Jaya Prakashan & Abdelmajeed Nasereddin & Inbar Plaschkes & Yuval , 2023. "Systematic identification of gene combinations to target in innate immune cells to enhance T cell activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. C. Megan Young & Laurent Beziaud & Pierre Dessen & Angela Madurga Alonso & Albert Santamaria-Martínez & Joerg Huelsken, 2023. "Metabolic dependencies of metastasis-initiating cells in female breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Laura Y. Zhou & Fei Zou & Wei Sun, 2023. "Prioritizing candidate peptides for cancer vaccines through predicting peptide presentation by HLA‐I proteins," Biometrics, The International Biometric Society, vol. 79(3), pages 2664-2676, September.
    20. Lucia Taraborrelli & Yasin Şenbabaoğlu & Lifen Wang & Junghyun Lim & Kerrigan Blake & Noelyn Kljavin & Sarah Gierke & Alexis Scherl & James Ziai & Erin McNamara & Mark Owyong & Shilpa Rao & Aslihan Ka, 2023. "Tumor-intrinsic expression of the autophagy gene Atg16l1 suppresses anti-tumor immunity in colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27331-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.