IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27026-9.html
   My bibliography  Save this article

Single-cell analysis of diverse immune phenotypes in malignant pleural effusion

Author

Listed:
  • Zhong-Yin Huang

    (Capital Medical University)

  • Ming-Ming Shao

    (Capital Medical University)

  • Jian-Chu Zhang

    (Huazhong University of Science and Technology)

  • Feng-Shuang Yi

    (Capital Medical University)

  • Juan Du

    (Capital Medical University)

  • Qiong Zhou

    (Huazhong University of Science and Technology)

  • Feng-Yao Wu

    (Nanning Fourth People’s Hospital)

  • Sha Li

    (Nanning Fourth People’s Hospital)

  • Wei Li

    (Nanning Fourth People’s Hospital)

  • Xian-Zhen Huang

    (Nanning Fourth People’s Hospital)

  • Kan Zhai

    (Capital Medical University)

  • Huan-Zhong Shi

    (Capital Medical University)

Abstract

The complex interactions among different immune cells have important functions in the development of malignant pleural effusion (MPE). Here we perform single-cell RNA sequencing on 62,382 cells from MPE patients induced by non-small cell lung cancer to describe the composition, lineage, and functional states of infiltrating immune cells in MPE. Immune cells in MPE display a number of transcriptional signatures enriched for regulatory T cells, B cells, macrophages, and dendritic cells compared to corresponding counterparts in blood. Helper T, cytotoxic T, regulatory T, and T follicular helper cells express multiple immune checkpoints or costimulatory molecules. Cell-cell interaction analysis identifies regulatory B cells with more interactions with CD4+ T cells compared to CD8+ T cells. Macrophages are transcriptionally heterogeneous and conform to M2 polarization characteristics. In addition, immune cells in MPE show the general up-regulation of glycolytic pathways associated with the hypoxic microenvironment. These findings show a detailed atlas of immune cells in human MPE and enhance the understanding of potential diagnostic and therapeutic targets in advanced non-small cell lung cancer.

Suggested Citation

  • Zhong-Yin Huang & Ming-Ming Shao & Jian-Chu Zhang & Feng-Shuang Yi & Juan Du & Qiong Zhou & Feng-Yao Wu & Sha Li & Wei Li & Xian-Zhen Huang & Kan Zhai & Huan-Zhong Shi, 2021. "Single-cell analysis of diverse immune phenotypes in malignant pleural effusion," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27026-9
    DOI: 10.1038/s41467-021-27026-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27026-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27026-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhengtao Xiao & Ziwei Dai & Jason W. Locasale, 2019. "Metabolic landscape of the tumor microenvironment at single cell resolution," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bárbara Andrade Barbosa & Saskia D. Asten & Ji Won Oh & Arantza Farina-Sarasqueta & Joanne Verheij & Frederike Dijk & Hanneke W. M. Laarhoven & Bauke Ylstra & Juan J. Garcia Vallejo & Mark A. Wiel & Y, 2021. "Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Handong Sun & Lishen Zhang & Zhonglin Wang & Danling Gu & Mengyan Zhu & Yun Cai & Lu Li & Jiaqi Tang & Bin Huang & Bakwatanisa Bosco & Ning Li & Lingxiang Wu & Wei Wu & Liangyu Li & Yuan Liang & Lin L, 2023. "Single-cell transcriptome analysis indicates fatty acid metabolism-mediated metastasis and immunosuppression in male breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Ke Song & Xinyan Yang & Geng An & Xinyu Xia & Jiexiang Zhao & Xiaoheng Xu & Cong Wan & Tianyuan Liu & Yi Zheng & Shaofang Ren & Mei Wang & Gang Chang & Shane J. F. Cronin & Josef M. Penninger & Tao Ji, 2022. "Targeting APLN/APJ restores blood-testis barrier and improves spermatogenesis in murine and human diabetic models," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Guohe Song & Yang Shi & Lu Meng & Jiaqiang Ma & Siyuan Huang & Juan Zhang & Yingcheng Wu & Jiaxin Li & Youpei Lin & Shuaixi Yang & Dongning Rao & Yifei Cheng & Jian Lin & Shuyi Ji & Yuming Liu & Shan , 2022. "Single-cell transcriptomic analysis suggests two molecularly distinct subtypes of intrahepatic cholangiocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Kang Wang & Ioannis Zerdes & Henrik J. Johansson & Dhifaf Sarhan & Yizhe Sun & Dimitris C. Kanellis & Emmanouil G. Sifakis & Artur Mezheyeuski & Xingrong Liu & Niklas Loman & Ingrid Hedenfalk & Jonas , 2024. "Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    6. Yuefan Huang & Vakul Mohanty & Merve Dede & Kyle Tsai & May Daher & Li Li & Katayoun Rezvani & Ken Chen, 2023. "Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27026-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.