IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11738-0.html
   My bibliography  Save this article

Metabolic landscape of the tumor microenvironment at single cell resolution

Author

Listed:
  • Zhengtao Xiao

    (Duke University School of Medicine)

  • Ziwei Dai

    (Duke University School of Medicine)

  • Jason W. Locasale

    (Duke University School of Medicine)

Abstract

The tumor milieu consists of numerous cell types each existing in a different environment. However, a characterization of metabolic heterogeneity at single-cell resolution is not established. Here, we develop a computational pipeline to study metabolic programs in single cells. In two representative human cancers, melanoma and head and neck, we apply this algorithm to define the intratumor metabolic landscape. We report an overall discordance between analyses of single cells and those of bulk tumors with higher metabolic activity in malignant cells than previously appreciated. Variation in mitochondrial programs is found to be the major contributor to metabolic heterogeneity. Surprisingly, the expression of both glycolytic and mitochondrial programs strongly correlates with hypoxia in all cell types. Immune and stromal cells could also be distinguished by their metabolic features. Taken together this analysis establishes a computational framework for characterizing metabolism using single cell expression data and defines principles of the tumor microenvironment.

Suggested Citation

  • Zhengtao Xiao & Ziwei Dai & Jason W. Locasale, 2019. "Metabolic landscape of the tumor microenvironment at single cell resolution," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11738-0
    DOI: 10.1038/s41467-019-11738-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11738-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11738-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guohe Song & Yang Shi & Lu Meng & Jiaqiang Ma & Siyuan Huang & Juan Zhang & Yingcheng Wu & Jiaxin Li & Youpei Lin & Shuaixi Yang & Dongning Rao & Yifei Cheng & Jian Lin & Shuyi Ji & Yuming Liu & Shan , 2022. "Single-cell transcriptomic analysis suggests two molecularly distinct subtypes of intrahepatic cholangiocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Yuefan Huang & Vakul Mohanty & Merve Dede & Kyle Tsai & May Daher & Li Li & Katayoun Rezvani & Ken Chen, 2023. "Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Handong Sun & Lishen Zhang & Zhonglin Wang & Danling Gu & Mengyan Zhu & Yun Cai & Lu Li & Jiaqi Tang & Bin Huang & Bakwatanisa Bosco & Ning Li & Lingxiang Wu & Wei Wu & Liangyu Li & Yuan Liang & Lin L, 2023. "Single-cell transcriptome analysis indicates fatty acid metabolism-mediated metastasis and immunosuppression in male breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Ke Song & Xinyan Yang & Geng An & Xinyu Xia & Jiexiang Zhao & Xiaoheng Xu & Cong Wan & Tianyuan Liu & Yi Zheng & Shaofang Ren & Mei Wang & Gang Chang & Shane J. F. Cronin & Josef M. Penninger & Tao Ji, 2022. "Targeting APLN/APJ restores blood-testis barrier and improves spermatogenesis in murine and human diabetic models," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Bárbara Andrade Barbosa & Saskia D. Asten & Ji Won Oh & Arantza Farina-Sarasqueta & Joanne Verheij & Frederike Dijk & Hanneke W. M. Laarhoven & Bauke Ylstra & Juan J. Garcia Vallejo & Mark A. Wiel & Y, 2021. "Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Kang Wang & Ioannis Zerdes & Henrik J. Johansson & Dhifaf Sarhan & Yizhe Sun & Dimitris C. Kanellis & Emmanouil G. Sifakis & Artur Mezheyeuski & Xingrong Liu & Niklas Loman & Ingrid Hedenfalk & Jonas , 2024. "Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    7. Zhong-Yin Huang & Ming-Ming Shao & Jian-Chu Zhang & Feng-Shuang Yi & Juan Du & Qiong Zhou & Feng-Yao Wu & Sha Li & Wei Li & Xian-Zhen Huang & Kan Zhai & Huan-Zhong Shi, 2021. "Single-cell analysis of diverse immune phenotypes in malignant pleural effusion," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11738-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.