IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26947-9.html
   My bibliography  Save this article

Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries

Author

Listed:
  • Zedong Zhao

    (Fudan University)

  • Rong Wang

    (Fudan University)

  • Chengxin Peng

    (University of Shanghai for Science and Technology
    Nankai University)

  • Wuji Chen

    (Fudan University)

  • Tianqi Wu

    (Fudan University)

  • Bo Hu

    (Fudan University)

  • Weijun Weng

    (Fudan University)

  • Ying Yao

    (Fudan University)

  • Jiaxi Zeng

    (Fudan University)

  • Zhihong Chen

    (University of Shanghai for Science and Technology)

  • Peiying Liu

    (Fudan University)

  • Yicheng Liu

    (Fudan University)

  • Guisheng Li

    (University of Shanghai for Science and Technology)

  • Jia Guo

    (Fudan University)

  • Hongbin Lu

    (Fudan University
    Yiwu Research Institute of Fudan University)

  • Zaiping Guo

    (The University of Adelaide)

Abstract

Rechargeable aqueous zinc-ion batteries (RZIBs) provide a promising complementarity to the existing lithium-ion batteries due to their low cost, non-toxicity and intrinsic safety. However, Zn anodes suffer from zinc dendrite growth and electrolyte corrosion, resulting in poor reversibility. Here, we develop an ultrathin, fluorinated two-dimensional porous covalent organic framework (FCOF) film as a protective layer on the Zn surface. The strong interaction between fluorine (F) in FCOF and Zn reduces the surface energy of the Zn (002) crystal plane, enabling the preferred growth of (002) planes during the electrodeposition process. As a result, Zn deposits show horizontally arranged platelet morphology with (002) orientations preferred. Furthermore, F-containing nanochannels facilitate ion transport and prevent electrolyte penetration for improving corrosion resistance. The FCOF@Zn symmetric cells achieve stability for over 750 h at an ultrahigh current density of 40 mA cm−2. The high-areal-capacity full cells demonstrate hundreds of cycles under high Zn utilization conditions.

Suggested Citation

  • Zedong Zhao & Rong Wang & Chengxin Peng & Wuji Chen & Tianqi Wu & Bo Hu & Weijun Weng & Ying Yao & Jiaxi Zeng & Zhihong Chen & Peiying Liu & Yicheng Liu & Guisheng Li & Jia Guo & Hongbin Lu & Zaiping , 2021. "Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26947-9
    DOI: 10.1038/s41467-021-26947-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26947-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26947-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sheng-Bo Wang & Qing Ran & Rui-Qi Yao & Hang Shi & Zi Wen & Ming Zhao & Xing-You Lang & Qing Jiang, 2020. "Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Xiao Liang & Quan Pang & Ivan R. Kochetkov & Marina Safont Sempere & He Huang & Xiaoqi Sun & Linda F. Nazar, 2017. "A facile surface chemistry route to a stabilized lithium metal anode," Nature Energy, Nature, vol. 2(9), pages 1-7, September.
    3. Hua Gui Yang & Cheng Hua Sun & Shi Zhang Qiao & Jin Zou & Gang Liu & Sean Campbell Smith & Hui Ming Cheng & Gao Qing Lu, 2008. "Anatase TiO2 single crystals with a large percentage of reactive facets," Nature, Nature, vol. 453(7195), pages 638-641, May.
    4. Jun Liu & Zhenan Bao & Yi Cui & Eric J. Dufek & John B. Goodenough & Peter Khalifah & Qiuyan Li & Bor Yann Liaw & Ping Liu & Arumugam Manthiram & Y. Shirley Meng & Venkat R. Subramanian & Michael F. T, 2019. "Pathways for practical high-energy long-cycling lithium metal batteries," Nature Energy, Nature, vol. 4(3), pages 180-186, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyang Zheng & Xiongwei Zhong & Qi Zhang & Mengtian Zhang & Lixin Dai & Xiao Xiao & Jiahe Xu & Miaolun Jiao & Boran Wang & Hong Li & Yeyang Jia & Rui Mao & Guangmin Zhou, 2024. "An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Wenjie Zang & Jaeha Lee & Peter Tieu & Xingxu Yan & George W. Graham & Ich C. Tran & Peikui Wang & Phillip Christopher & Xiaoqing Pan, 2024. "Distribution of Pt single atom coordination environments on anatase TiO2 supports controls reactivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Guangli Zheng & Tong Yan & Yifeng Hong & Xiaona Zhang & Jianying Wu & Zhenxing Liang & Zhiming Cui & Li Du & Huiyu Song, 2023. "A non-Newtonian fluid quasi-solid electrolyte designed for long life and high safety Li-O2 batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Yuxuan Xiang & Mingming Tao & Xiaoxuan Chen & Peizhao Shan & Danhui Zhao & Jue Wu & Min Lin & Xiangsi Liu & Huajin He & Weimin Zhao & Yonggang Hu & Junning Chen & Yuexing Wang & Yong Yang, 2023. "Gas induced formation of inactive Li in rechargeable lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Yufen Chen & Lluís Soler & Claudio Cazorla & Jana Oliveras & Neus G. Bastús & Víctor F. Puntes & Jordi Llorca, 2023. "Facet-engineered TiO2 drives photocatalytic activity and stability of supported noble metal clusters during H2 evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Yongyang Song & Jiajia Zhou & Zhongpeng Zhu & Xiaoxia Li & Yue Zhang & Xinyi Shen & Padraic O’Reilly & Xiuling Li & Xinmiao Liang & Lei Jiang & Shutao Wang, 2023. "Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Jung-Hui Kim & Ju-Myung Kim & Seok-Kyu Cho & Nag-Young Kim & Sang-Young Lee, 2022. "Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Shengmei Chen & Yiran Ying & Longtao Ma & Daming Zhu & Haitao Huang & Li Song & Chunyi Zhi, 2023. "An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Liu, Haiping & Li, Huajiao & Qi, Yajie & An, Pengli & Shi, Jianglan & Liu, Yanxin, 2021. "Identification of high-risk agents and relationships in nickel, cobalt, and lithium trade based on resource-dependent networks," Resources Policy, Elsevier, vol. 74(C).
    17. Yunxiang Zhao & Shan Guo & Manjing Chen & Bingan Lu & Xiaotan Zhang & Shuquan Liang & Jiang Zhou, 2023. "Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Zeng, Qingyi & Bai, Jing & Li, Jinhua & Li, Linsen & Xia, Ligang & Zhou, Baoxue & Sun, Yugang, 2018. "Highly-stable and efficient photocatalytic fuel cell based on an epitaxial TiO2/WO3/W nanothorn photoanode and enhanced radical reactions for simultaneous electricity production and wastewater treatme," Applied Energy, Elsevier, vol. 220(C), pages 127-137.
    19. Minglei Mao & Xiao Ji & Qiyu Wang & Zejing Lin & Meiying Li & Tao Liu & Chengliang Wang & Yong-Sheng Hu & Hong Li & Xuejie Huang & Liquan Chen & Liumin Suo, 2023. "Anion-enrichment interface enables high-voltage anode-free lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. V. Reisecker & F. Flatscher & L. Porz & C. Fincher & J. Todt & I. Hanghofer & V. Hennige & M. Linares-Moreau & P. Falcaro & S. Ganschow & S. Wenner & Y.-M. Chiang & J. Keckes & J. Fleig & D. Rettenwan, 2023. "Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26947-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.