IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26322-8.html
   My bibliography  Save this article

Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc

Author

Listed:
  • Hong-Yan Li

    (Chinese Academy of Sciences
    CAS Center for Excellence in Deep Earth Science
    Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou))

  • Rui-Peng Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jie Li

    (Chinese Academy of Sciences
    CAS Center for Excellence in Deep Earth Science)

  • Yoshihiko Tamura

    (Japan Agency for Marine-Earth Science and Technology (JAMSTEC))

  • Christopher Spencer

    (Queen’s University)

  • Robert J. Stern

    (University of Texas at Dallas)

  • Jeffrey G. Ryan

    (University of South Florida)

  • Yi-Gang Xu

    (Chinese Academy of Sciences
    CAS Center for Excellence in Deep Earth Science
    Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou))

Abstract

How serpentinites in the forearc mantle and subducted lithosphere become involved in enriching the subarc mantle source of arc magmas is controversial. Here we report molybdenum isotopes for primitive submarine lavas and serpentinites from active volcanoes and serpentinite mud volcanoes in the Mariana arc. These data, in combination with radiogenic isotopes and elemental ratios, allow development of a model whereby shallow, partially serpentinized and subducted forearc mantle transfers fluid and melt from the subducted slab into the subarc mantle. These entrained forearc mantle fragments are further metasomatized by slab fluids/melts derived from the dehydration of serpentinites in the subducted lithospheric slab. Multistage breakdown of serpentinites in the subduction channel ultimately releases fluids/melts that trigger Mariana volcanic front volcanism. Serpentinites dragged down from the forearc mantle are likely exhausted at >200 km depth, after which slab-derived serpentinites are responsible for generating slab melts.

Suggested Citation

  • Hong-Yan Li & Rui-Peng Zhao & Jie Li & Yoshihiko Tamura & Christopher Spencer & Robert J. Stern & Jeffrey G. Ryan & Yi-Gang Xu, 2021. "Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26322-8
    DOI: 10.1038/s41467-021-26322-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26322-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26322-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ronit Kessel & Max W. Schmidt & Peter Ulmer & Thomas Pettke, 2005. "Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth," Nature, Nature, vol. 437(7059), pages 724-727, September.
    2. Chen Cai & Douglas A. Wiens & Weisen Shen & Melody Eimer, 2018. "Water input into the Mariana subduction zone estimated from ocean-bottom seismic data," Nature, Nature, vol. 563(7731), pages 389-392, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong-Yan Li & Xiang Li & Jeffrey G. Ryan & Chao Zhang & Yi-Gang Xu, 2022. "Boron isotopes in boninites document rapid changes in slab inputs during subduction initiation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong-Yan Li & Xiang Li & Jeffrey G. Ryan & Chao Zhang & Yi-Gang Xu, 2022. "Boron isotopes in boninites document rapid changes in slab inputs during subduction initiation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jinyu Tian & Zhitu Ma & Jian Lin & Min Xu & Xun Yu & Ba Manh Le & Xubo Zhang & Fan Zhang & Laiyin Guo, 2023. "Mantle heterogeneity caused by trapped water in the Southwest Basin of the South China Sea," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Pitcher, Bradley W & Kent, Adam J.R., 2018. "Statistics and segmentation: Using Big Data to assess Cascades Arc compositional variability," Earth Arxiv 6xq3w, Center for Open Science.
    4. Yunchao Shu & Sune G. Nielsen & Veronique Roux & Gerhard Wörner & Jerzy Blusztajn & Maureen Auro, 2022. "Sources of dehydration fluids underneath the Kamchatka arc," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26322-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.