IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20667-2.html
   My bibliography  Save this article

Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride

Author

Listed:
  • C. R. Woods

    (Department of Physics & Astronomy, University of Manchester
    University of Manchester)

  • P. Ares

    (Department of Physics & Astronomy, University of Manchester
    University of Manchester)

  • H. Nevison-Andrews

    (Department of Physics & Astronomy, University of Manchester
    University of Manchester)

  • M. J. Holwill

    (Department of Physics & Astronomy, University of Manchester
    University of Manchester)

  • R. Fabregas

    (Department of Physics & Astronomy, University of Manchester)

  • F. Guinea

    (Imdea Nanociencia, Faraday 9
    Donostia International Physics Center)

  • A. K. Geim

    (Department of Physics & Astronomy, University of Manchester
    University of Manchester)

  • K. S. Novoselov

    (Department of Physics & Astronomy, University of Manchester
    University of Manchester
    National University of Singapore
    Liangjiang New Area)

  • N. R. Walet

    (Department of Physics & Astronomy, University of Manchester)

  • L. Fumagalli

    (Department of Physics & Astronomy, University of Manchester
    University of Manchester)

Abstract

When two-dimensional crystals are brought into close proximity, their interaction results in reconstruction of electronic spectrum and crystal structure. Such reconstruction strongly depends on the twist angle between the crystals, which has received growing attention due to interesting electronic and optical properties that arise in graphene and transitional metal dichalcogenides. Here we study two insulating crystals of hexagonal boron nitride stacked at small twist angle. Using electrostatic force microscopy, we observe ferroelectric-like domains arranged in triangular superlattices with a large surface potential. The observation is attributed to interfacial elastic deformations that result in out-of-plane dipoles formed by pairs of boron and nitrogen atoms belonging to opposite interfacial surfaces. This creates a bilayer-thick ferroelectric with oppositely polarized (BN and NB) dipoles in neighbouring domains, in agreement with our modeling. These findings open up possibilities for designing van der Waals heterostructures and offer an alternative probe to study moiré-superlattice electrostatic potentials.

Suggested Citation

  • C. R. Woods & P. Ares & H. Nevison-Andrews & M. J. Holwill & R. Fabregas & F. Guinea & A. K. Geim & K. S. Novoselov & N. R. Walet & L. Fumagalli, 2021. "Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20667-2
    DOI: 10.1038/s41467-020-20667-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20667-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20667-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Bennett & Gaurav Chaudhary & Robert-Jan Slager & Eric Bousquet & Philippe Ghosez, 2023. "Polar meron-antimeron networks in strained and twisted bilayers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Dongyang Yang & Jing Liang & Jingda Wu & Yunhuan Xiao & Jerry I. Dadap & Kenji Watanabe & Takashi Taniguchi & Ziliang Ye, 2024. "Non-volatile electrical polarization switching via domain wall release in 3R-MoS2 bilayer," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Ming Lv & Jiulong Wang & Ming Tian & Neng Wan & Wenyi Tong & Chungang Duan & Jiamin Xue, 2024. "Multiresistance states in ferro- and antiferroelectric trilayer boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Peng Meng & Yaze Wu & Renji Bian & Er Pan & Biao Dong & Xiaoxu Zhao & Jiangang Chen & Lishu Wu & Yuqi Sun & Qundong Fu & Qing Liu & Dong Shi & Qi Zhang & Yong-Wei Zhang & Zheng Liu & Fucai Liu, 2022. "Sliding induced multiple polarization states in two-dimensional ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Shuai Zhang & Yang Liu & Zhiyuan Sun & Xinzhong Chen & Baichang Li & S. L. Moore & Song Liu & Zhiying Wang & S. E. Rossi & Ran Jing & Jordan Fonseca & Birui Yang & Yinming Shao & Chun-Ying Huang & Tak, 2023. "Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Ruirui Niu & Zhuoxian Li & Xiangyan Han & Zhuangzhuang Qu & Dongdong Ding & Zhiyu Wang & Qianling Liu & Tianyao Liu & Chunrui Han & Kenji Watanabe & Takashi Taniguchi & Menghao Wu & Qi Ren & Xueyun Wa, 2022. "Giant ferroelectric polarization in a bilayer graphene heterostructure," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20667-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.