IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18232-y.html
   My bibliography  Save this article

A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater

Author

Listed:
  • Ibadillah A. Digdaya

    (California Institute of Technology)

  • Ian Sullivan

    (California Institute of Technology)

  • Meng Lin

    (Southern University of Science and Technology)

  • Lihao Han

    (California Institute of Technology)

  • Wen-Hui Cheng

    (California Institute of Technology)

  • Harry A. Atwater

    (California Institute of Technology)

  • Chengxiang Xiang

    (California Institute of Technology)

Abstract

Capture and conversion of CO2 from oceanwater can lead to net-negative emissions and can provide carbon source for synthetic fuels and chemical feedstocks at the gigaton per year scale. Here, we report a direct coupled, proof-of-concept electrochemical system that uses a bipolar membrane electrodialysis (BPMED) cell and a vapor-fed CO2 reduction (CO2R) cell to capture and convert CO2 from oceanwater. The BPMED cell replaces the commonly used water-splitting reaction with one-electron, reversible redox couples at the electrodes and demonstrates the ability to capture CO2 at an electrochemical energy consumption of 155.4 kJ mol−1 or 0.98 kWh kg−1 of CO2 and a CO2 capture efficiency of 71%. The direct coupled, vapor-fed CO2R cell yields a total Faradaic efficiency of up to 95% for electrochemical CO2 reduction to CO. The proof-of-concept system provides a unique technological pathway for CO2 capture and conversion from oceanwater with only electrochemical processes.

Suggested Citation

  • Ibadillah A. Digdaya & Ian Sullivan & Meng Lin & Lihao Han & Wen-Hui Cheng & Harry A. Atwater & Chengxiang Xiang, 2020. "A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18232-y
    DOI: 10.1038/s41467-020-18232-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18232-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18232-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shijian Jin & Min Wu & Yan Jing & Roy G. Gordon & Michael J. Aziz, 2022. "Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Agliuzza, Matteo & Mezza, Alessio & Sacco, Adriano, 2023. "Solar-driven integrated carbon capture and utilization: Coupling CO2 electroreduction toward CO with capture or photovoltaic systems," Applied Energy, Elsevier, vol. 334(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18232-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.