IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12401-4.html
   My bibliography  Save this article

Enhanced spin orbit interaction of light in highly confining optical fibers for mode division multiplexing

Author

Listed:
  • P. Gregg

    (Boston University)

  • P. Kristensen

    (OFS-Fitel ApS)

  • A. Rubano

    (Università di Napoli Federico II and CNR-ISASI)

  • S. Golowich

    (MIT Lincoln Lab)

  • L. Marrucci

    (Università di Napoli Federico II and CNR-ISASI)

  • S. Ramachandran

    (Boston University)

Abstract

Light carries both orbital angular momentum (OAM) and spin angular momentum (SAM), related to wavefront rotation and polarization, respectively. These are usually approximately independent quantities, but they become coupled by light’s spin-orbit interaction (SOI) in certain exotic geometries and at the nanoscale. Here we reveal a manifestation of strong SOI in fibers engineered at the micro-scale and supporting the only known example of propagating light modes with non-integer mean OAM. This enables propagation of a record number (24) of states in a single optical fiber with low cross-talk (purity > 93%), even as tens-of-meters long fibers are bent, twisted or otherwise handled, as fibers are practically deployed. In addition to enabling the investigation of novel SOI effects, these light states represent the first ensemble with which mode count can be potentially arbitrarily scaled to satisfy the exponentially growing demands of high-performance data centers and supercomputers, or telecommunications network nodes.

Suggested Citation

  • P. Gregg & P. Kristensen & A. Rubano & S. Golowich & L. Marrucci & S. Ramachandran, 2019. "Enhanced spin orbit interaction of light in highly confining optical fibers for mode division multiplexing," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12401-4
    DOI: 10.1038/s41467-019-12401-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12401-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12401-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ji-Xiang & Zhong, Mingliang & Wu, Zhe & Guo, Mengyue & Liang, Xin & Qi, Bo, 2022. "Ground-based investigation of a directional, flexible, and wireless concentrated solar energy transmission system," Applied Energy, Elsevier, vol. 322(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12401-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.