IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11241-6.html
   My bibliography  Save this article

RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates

Author

Listed:
  • Marina Garcia-Jove Navarro

    (PSL University, Sorbonne Université, CNRS)

  • Shunnichi Kashida

    (PSL University, Sorbonne Université, CNRS)

  • Racha Chouaib

    (Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement
    Lebanese International University (LIU)
    Lebanese University)

  • Sylvie Souquere

    (CNRS UMR-9196, Institut Gustave Roussy)

  • Gérard Pierron

    (CNRS UMR-9196, Institut Gustave Roussy)

  • Dominique Weil

    (Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement)

  • Zoher Gueroui

    (PSL University, Sorbonne Université, CNRS)

Abstract

Liquid–liquid phase separation is thought to be a key organizing principle in eukaryotic cells to generate highly concentrated dynamic assemblies, such as the RNP granules. Numerous in vitro approaches have validated this model, yet a missing aspect is to take into consideration the complex molecular mixture and promiscuous interactions found in vivo. Here we report the versatile scaffold ArtiG to generate concentration-dependent RNA–protein condensates within living cells, as a bottom-up approach to study the impact of co-segregated endogenous components on phase separation. We demonstrate that intracellular RNA seeds the nucleation of the condensates, as it provides molecular cues to locally coordinate the formation of endogenous high-order RNP assemblies. Interestingly, the co-segregation of intracellular components ultimately impacts the size of the phase-separated condensates. Thus, RNA arises as an architectural element that can influence the composition and the morphological outcome of the condensate phases in an intracellular context.

Suggested Citation

  • Marina Garcia-Jove Navarro & Shunnichi Kashida & Racha Chouaib & Sylvie Souquere & Gérard Pierron & Dominique Weil & Zoher Gueroui, 2019. "RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11241-6
    DOI: 10.1038/s41467-019-11241-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11241-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11241-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federica Raguseo & Yiran Wang & Jessica Li & Marija Petrić Howe & Rubika Balendra & Anouk Huyghebaert & Devkee M. Vadukul & Diana A. Tanase & Thomas E. Maher & Layla Malouf & Roger Rubio-Sánchez & Fra, 2023. "The ALS/FTD-related C9orf72 hexanucleotide repeat expansion forms RNA condensates through multimolecular G-quadruplexes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Karl E. Bauer & Niklas Bargenda & Rico Schieweck & Christin Illig & Inmaculada Segura & Max Harner & Michael A. Kiebler, 2022. "RNA supply drives physiological granule assembly in neurons," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Lennart Enders & Marton Siklos & Jan Borggräfe & Stefan Gaussmann & Anna Koren & Monika Malik & Tatjana Tomek & Michael Schuster & Jiří Reiniš & Elisa Hahn & Andrea Rukavina & Andreas Reicher & Tamara, 2023. "Pharmacological perturbation of the phase-separating protein SMNDC1," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11241-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.